
SoC Registers Management: WTO Approach

Bertrand B. Blanc
bertrand.blanc@xx.com

Xxxxx Xxxxxxxxxxx – IC Cellular Systems –XXXX SoC Verification Team

Abstract

Handling registers, to program the hardware from the
software, involves a huge effort in terms of specifica-
tion, design, documentation, verification, validation and
APIs. The conventional methodologies often result in the
creation of multiple sets of register data, each specific to
one end-user application. An additional cost, in terms of
human and material resources, and timeframes, arises
from the use of ad-hoc tactical methods to ensure co-
herency between the multiple copies of register capture
data. We are genuinely facing a lack of unified approach
to handle registers globally throughout the design pro-
cess, from early specifications to application program-
ming.

XXXX-Xxxxxx R©, provided by Xxxxx Xxxxxxx, allows reg-
ister information to be captured from register specifica-
tion that are maintained by owners of functional specs.
Once captured, the register data are stored once and for
all in a unique database, thereby ensuring consistency,
and are used to generate targets for different purposes.
The integrity of the register data is checked at the ear-
lier stages before generation, therefore avoiding manual
checks, dramatically improving quality, and saving valu-
able resources. This innovation is a powerful enabler of
accurate and coherent register management.

Contents

Introduction 2

1 Register Description Format 2
1.1 Hierarchy levels 2
1.2 Extension . 3
1.3 Abstraction . 4
1.4 Constrained Abstraction 4

2 Model of Computation 5

3 Properties 5
3.1 Contiguity coherency 5
3.2 Range coherency 5
3.3 Overlap coherency 6

4 Example: IRQ management module 6
4.1 Shared library: Generic read / write 1 to clear form

declaration . 6
4.2 Instantiation: Declaration of an IRQ management

module . 7
4.3 MoC: Full instantiated IRQ management component

for the FIFO . 7
4.4 Reuse: Component managing the IRQs of a module . 8

5 Purposed targeted outputs 9
5.1 C check library . 9
5.2 C library . 9
5.3 Hierarchal C tree 9
5.4 E code . 10
5.5 Documentation output 10
5.6 Hierarchal Flat RD-XML 10
5.7 Gateway to Xxxxxx rtl.conf 11
5.8 Xxxxxxxxxx for debug 11

6 Results 11

Summary 12

References 12

1

Introduction

Handling registers correctly is a crucial need within
an industrial project. Almost all the involved teams and
team members are impacted by registers:

the integration specification owner needs registers to
make IPs communicate with one another

the IP specification owner is expected to define the
behaviour of his IP and the way to configure them
through a register bank

the validation team uses registers as entry points to
test a set of modules within the complete project
platform

the Technical Reference Manual (TRM) team
manages this amount of registers to get commented
within the manuals

the end-user / FAE uses registers to write the applica-
tions according to the features offered by the plat-
form.

Then, managing registers is a valuable effort in or-
der to focus on main industrial criteria: quality policy,
processes robustness, reuse and costs reductions. Xxxxx
Xxxxxxx Ltd. [XxxxWS], leader in IP-reuse and regis-
ter capture, authored the first solution providing an envi-
ronment able to capture registers at a single place and
thereafter compute this database according to the tar-
geted purpose. Registers are entered once by the speci-
fication’s owners and then generated for both validation
and TRM teams.

Xxxxx xx toolset was used within a had-hoc flow
built over this suite throughout the XXXXXXX pro-
gram. Registers were entered for each IP block, inte-
grated within devices, finally generated for the various
purposes in different target languages:

• E code and C library to check the registers in the
top-level validation flow: especially access type,
power-on-reset values;

• C library to manage validation scripts to access the
registers;

• HTML to share the up-to-date register database be-
tween the teams;

• RTF dedicated to the TRM team.

Register capture involves four major computer sci-
ences steps built over a semantics, known in the litera-
ture as

the front-end to capture the data according to key-
words or glyphs fitting the semantics;

the checks to ensure that the captured data are coherent
and follow the given semantics;

the core algorithms to compute the captured data from
a Tagged Abstract Syntax Tree into a more complex
form following a Model of Computation;

the back-end to output some code according to a tar-
geted purpose.

This document proposes two major interleaved ideas:

(i) a format has been prototyped to address accurately
each of the concerns from the front-end to the
back-end, through a mathematical semantics and
a given Model of Computation.

(ii) the strengths and the weaknesses of Xxxxx xx have
been pointed out and some major improvement
identified for future Xxxxx toolset deliveries.

The first part of the document introduces a high level
Register Description Format, also called RD, to high-
light the main front-end features needed to describe reg-
isters. The second part briefly presents a Model of Com-
putation, or MoC, to translate the captured registers into
a flat model using core algorithms. The third part shows
some properties to assess in order to ensure the co-
herency of the captured registers. The following part
is devoted to depict through an example the main topic:
Write-Things-Once (WTO). Hence is shown some tar-
geted languages to focus on the back-end. We finally
conclude with experimental results.

1 Register Description Format

This draft highlights the main features of a mathe-
matical higher level of register capture and proposes a
Model of Computation. This document aims to give an
overview of those features through a pseudo-language
created for this purpose.

1.1 Hierarchy levels

A register database can be seen as a tree with a root
and a hierarchy of nodes deriving each one another. In
Xxxxx, this root is called a product, recursively com-
posed of five hierarchal levels:

1. a product is composed of instances of cell

2. a cell is composed of registers’ sets

September 2004 – Dallas, TX 2 2004 c© Symposium on IC Design Verification

3. a registers’ set is composed of registers

4. a register is composed of bit-fields

5. a bit-field is composed of enumeration values

These levels define at their respective stage some at-
tributes which tune the registers’ database description.
These attributes will not be treated in details here, since
they are not the main aim of this section. Fixing the
levels of hierarchy suffers from flexibility since, for ex-
ample, a register can be composed of a transient bit-field
description, composed of relevant bit-fields.

We have no fixed number levels of hierarchy, but as
many levels of hierarchy as needed. We speak about
forms composed of four basic attributes and recursive
forms to tune this primal form. The six aforementioned
hierarchal levels of Xxxxx are defined as a sub-set of this
language. A proposal speaks about Xxxxx xx semantics
more in details [BBxxxxS04].

φ = α ∅ A (ψi)i∈Iu

A form φ is composed of

i. an access type α: basically read-only ro, write-
only wo, read-write rw. The special access type
all matches all the others when a reduction will be
performed;

ii. an empty set ∅. This set will be presented in an-
other section devoted to inheritance;

iii. a set of final optional attributes A composed of

a. a description field δ,

b. an offset field o,

c. a width ω setting a contiguous range of signifi-
cant bits,

d. a reset value ρ taken as the current value of the
form;

iv. a set of inner forms (ψi)i∈Iu
refining the form φ.

If this set is empty, then φ is a final form since it
cannot be deeper refined.

A revision register 32-bit wide will be captured by
the following piece of code:

ro REVISION is
description "This register contains

the IP revision code";
offset 0x0;
width 32 bit;
ro reserved is

description "Read return 0’s";
offset 8 bit;
reset 0x0;

width 24 bit;
end reserved;
ro Rev is

description "IP revision";
offset 0x0;
ro Minor is

description "Minor Revision";
offset 0 bit;
reset 0x1;
width 4 bit;

end Minor;
ro Major is

description "Major Revision";
offset 4 bit;
reset 0x0;
width 4 bit;

end Major;
end Rev;

end REVISION;

This piece of code will not be commented because
the syntactical keywords have been chosen to have an
intuitive meaning. We can notice that the inner form
Rev refining the definition of the registerREV ISION
is an upper-level definition of the revision Id composed
in fine of a Major and a Minor bit-fields each 4-bit
wide. In Xxxxx xx, this level is not captured: the revision
Id can only be composed of a couple of bit-fieldsMinor

and Major.
We also introduce some sets in order to be able to de-

fine further some relations or applications between sta-
ble sets:

i. Γφ is composed of forms captured by the designer

ii. Γ<φ> is a set of template forms captured by the
designer. These forms will be presented in the next
section devoted to instantiation of abstract forms

iii. Γ = Γφ ∪ Γ<φ> is the union of the couple of
precedent sets

iv. Φ is the set of all valid forms: Γ ⊂ Φ

v. Γφ is the set of inner forms of φ: Γφ = (ψi)i∈Iu

1.2 Extension

We have seen above that a form φ declares after
the access type α a set which was empty. This set
(εi)i∈Im

defines a set of forms in Γ to get inherited in
order to tune the form φ. This artifact contributes to
write-things-once (WTO feature).

φ = α (εi)i∈Im
A (ψi)i∈Iu

The Revision register follows two guidelines:

• Registers are mandatory 32-bits wide

• Read-Only reserved bit-fields have a mandatory de-
scription Reads return 0’s.

September 2004 – Dallas, TX 3 2004 c© Symposium on IC Design Verification

The piece of code below takes into consideration this
couple of guidelines.

all RegisterWidth is
width 32 bit;

end RegisterWidth;

all ReservedROdescription is
description ‘‘Reads return 0’s.’’;

end ReservedROdescription;

ro REVISION extends RegisterWidth is
description "This register contains

the IP revision code";
offset 0x0;
ro reserved extends ReservedROdescription is

offset 8 bit;
reset 0x0;
width 24 bit;

end reserved;
ro Rev is

description "IP revision";
offset 0x0;
ro Minor is

description "Minor Revision";
offset 0 bit;
reset 0x1;
width 4 bit;

end Minor;
ro Major is

description "Major Revision";
offset 4 bit;
reset 0x0;
width 4 bit;

end Major;
end Rev;

end REVISION;

Hence, guidelines or pieces of common code can be
written once to avoid as much as possible discrepancies
and permit in the future swift updates impacting all the
shared piece of code.

E.g. “Reads return 0’s.” would be better written
“Read returns 0.”. It can be changed within the en-
tire design just once and for all through the attribute
description of the form ReservedROdescription.

Xxxxx capture front-end do not allow this kind of ab-
straction.

1.3 Abstraction

In order to strengthen the WTO hypothesis intro-
duced above with the inheritance feature, we noticed that
some piece of code are close and differ one each other
in values. As standard programming languages define
functions or procedures with parameters, we define tem-
plate forms which are basically forms as defined above,
but have some generic parameters (τi)i∈In

used within.
These parameters will be instantiated during the compu-
tation steps (see relative model of computation section).

φ = (τi)i∈In
α (εi)Im

A (ψi)i∈Iu

The revision register can thus be written in a most
abstract way:

all RegisterWidth is
width 32 bit;

end RegisterWidth;

template < MAX, MIN >
all ReservedRO is

description ‘‘Reads return 0’s.’’;
offset MIN bit;
width MAX - MIN + 1 bit;
reset 0x0;

end Reserved;

template < MAX, MIN >
all Beach is

offset MIN bit;
width MAX - MIN + 1 bit;

end Beach;

ro REVISION extends RegisterWidth is
description "This register contains

the IP revision code";
offset 0x0;
ro reserved extends ReservedRO

< 31, 8 >
end reserved;
ro Rev is

description "IP revision";
offset 0x0;
ro Minor extends Beach < 3, 0 > is

description "Minor Revision";
reset 0x1;

end Minor;
ro Major extends Beach < 7, 4 > is

description "Major Revision";
reset 0x0;

end Major;
end Rev;

end REVISION;

We noticed that the code to be written by the designer
has been dramatically reduced ensuring, as a side-effect,
a decrease of possible errors. Moreover all reusable
piece of code can be embedded in libraries shared by
all designers. This provides for a high degree of reuse.

1.4 Constrained Abstraction

We have introduced all the needed material to capture
registers efficiently. However, we face a lack of type-
check which can be very dangerous in terms of capture,
and can be easily statically checked.

In the example below, the abstract parameter RANGE
of the template form ReservedRO is ought to be a form
since it is used within an inheritance statement. How-
ever, the designer wants the template form to get instan-
tiated with a Beach form to correctly set offset and width
attributes as depicted in the Beach template form above.
This feature aims to constrain the form to get instan-
tiated with a Beach-derived form. Thus, we introduce
constrained template forms.

φ = (χi → τi)i∈In
α (εi)Im

A (ψi)i∈Iu

χi is a form in Γ which ensure that the given generic

September 2004 – Dallas, TX 4 2004 c© Symposium on IC Design Verification

parameter τi must be χi-typed when expanded. Our reg-
ister tiny example is hence written:

all RegisterWidth is
width 32 bit;

end RegisterWidth;

template < VALUE >
all Reset is

reset VALUE;
end Reset;

template < MAX, MIN >
all Beach is

offset MIN bit;
width MAX - MIN + 1 bit;

end Beach;

template < Beach -> RANGE >
all ReservedRO extends RANGE, Reset<0x0> is

description ‘‘Reads return 0’s.’’;
end Reserved;

ro REVISION extends RegisterWidth is
description "This register contains

the IP revision code";
offset 0x0;
ro reserved extends ReservedRO

< Beach<31, 8> >
end reserved;
ro Rev is

description "IP revision";
offset 0x0;
ro Minor extends Beach

< 3, 0 >, Reset<0x1> is
description "Minor Revision";

end Minor;
ro Major extends Beach

< 7, 4 >, Reset<0x0> is
description "Major Revision";

end Major;
end Rev;

end REVISION;

2 Model of Computation

The proposed Model of Computation aims to trans-
late a spread register captured system into a flat full in-
stantiated one. Basically,

φ ∈ Γφ →∗ !φ ∈ Φ

This MoC is composed of the instantiation major
steps defined below. Some expansion and reduction
rules are used and accurately defined in the draft ded-
icated to describing the mathematical model.

If the reader is interested in a full description of the
semantics of the model, he can refer to the specific draft
[XXBBRDSP04].

The instantiation is composed of two features:

1. the inheritance step which aims to flat all extension
forms (εi)i∈Im

computing access type and attributes
and handle the attribute overload

2. the generic instantiation step which aims to instanti-
ate generic parameters of template forms with values
set as parameters in the caller

The Revision register is instantiated into its fully re-
duced normal form !Revision:

ro REVISION is
description "This register contains

the IP revision code";
offset 0x0;
width 32 bit;
ro reserved is

description "Read return 0’s";
offset 8 bit;
reset 0x0;
width 24 bit;

end reserved;
ro Rev is

description "IP revision";
offset 0x0;
ro Minor is

description "Minor Revision";
offset 0 bit;
reset 0x1;
width 4 bit;

end Minor;
ro Major is

description "Major Revision";
offset 4 bit;
reset 0x0;
width 4 bit;

end Major;
end Rev;

end REVISION;

The given instantiated register is hence fully instanti-
ated and checked. Therefore, if an upper form instanti-
ates it, it will not need to be checked once again in order
to be instantiated.

3 Properties

Some properties can be statically checked to ensure
that the register database is coherent.

3.1 Contiguity coherency

If a form declares a fixed width through the width
attribute, hence all bits are expected to be defined. E.g.
the Revision register declared a 32-bit wide range and
defined three exclusive ranges: a 24-bit range for the
reserved bit-field, a 4-bit range for the Major bit-field
and a 4-bit range for the Minor bit-field.

3.2 Range coherency

Ranges are defined with the offset attribute. Their
width is infered, if possible, through the width defined
within the hierarchal inner forms. They must remain ex-
clusive one each other.

September 2004 – Dallas, TX 5 2004 c© Symposium on IC Design Verification

The property of range coherency assesses that the re-
fined inner forms meet the contiguity coherency prop-
erty.

However, this property does not assess that all bits
are defined.

3.3 Overlap coherency

Two defined bit-fields must remain exclusive accord-
ing to the contiguity coherency property. However,
sometimes, a same bit-field could have different behav-
ior according to an activation condition. Two kinds of
form can be exhibited:

1. dual forms which are final forms only tuning the ac-
cess type and the reset value, without any activation
condition.

2. modal forms which closely depend on activation
condition β ∈ M and allow the user to write two
separate behaviors in the same form range.

4 Example: IRQ management module

An IRQ management module is composed of IRQ
lines which will be enabled or disabled by hardware
components. These lines can be read to check if the
concerned IRQ has occurred and reset according to 4
commonly used protocols — read / write 1 to clear, read
/ write 0 to clear, read / write 1 to set, read / write 0 to
set.

For our purpose, the truth table below depicts the be-
havior of a read / write 1 to clear IRQ line.

In this example, we assume that no bypass protocol
is defined i.e. an IRQ arisen by a component and a
read/write command cannot occur at the meantime. The
figure below highlights a basic IRQ line management.

command

IRQIP

logics

wire Value

Write0x1

Write0x0

Read0x1

Read0x0

Monitor

wire IRQ command IRQ
0 0 idle 0
0 1 idle 0
1 0 idle 1
1 1 idle 1
0 0 read 0 (Read0x0)
0 0 write 1 (Write0x1) 0
0 0 write 0 (Write0x0) 0
0 1 read 1 (Read0x1)
0 1 write 1 (Write0x1) 0
0 1 write 0 (Write0x0) 1

4.1 Shared library: Generic read / write 1 to
clear form declaration

This form is basically fully instantiated yet:

rw IRQ_rw1toClr is
description ‘‘IRQ line R/W 1 to clear’’;
reset 0x0;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end IRQ_rw1toClr;

However, the reset value of this 1-bit register is hard
coded with 0. In some cases, this value should be set to
1. The first solution would be to manually duplicate this
capture to hard code the reset value to 1. The second
solution, highly recommended, is to give a parameter to
this form. This fully instantiated form in Γφ is abstracted
and goes in Γ<φ> in order to be instantiated with the
wanted reset value.

template < RESET >
rw IRQ_rw1toClr is

description ‘‘IRQ line R/W 1 to clear’’;
reset RESET;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;

September 2004 – Dallas, TX 6 2004 c© Symposium on IC Design Verification

wo ResetStatus is
description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end IRQ_rw1toClr;

4.2 Instantiation: Declaration of an IRQ man-
agement module

We are designing a FIFO which has 12 IRQ lines.
We will declare and define the module which aims to
manage these lines.

The current specification defines 5 IRQs as depicted
in the figure below.

We can notice that 7 bits, in the range J5, 11K, are re-
served for future usage. These bits are hard-wired con-
nected to return 0’s on read and discard any writing val-
ues. We will therefore define a template form which de-
clares such a range of reserved bits.

template < N, OFFSET >
rw Reserved is

description ‘‘Reserved. Reads return 0’s’’;
reset 0x0;
width N bit;
offset OFFSET bit;

end Reserved;

root all FIFO_IRQs is
description ‘‘FIFO IRQ lines management’’;
width 12 bit;
all reserved extends Reserved< 12 - 5, 5 >
end reserved;
all FIFO_UF extends IRQ_rw1toClr<0> is

description ‘‘FIFO UnderFlow IRQ’’;
offset 0x0;

end FIFO_UF;
all FIFO_EPTY extends IRQ_rw1toClr<1> is

description ‘‘FIFO Empty IRQ’’;
offset 1 bit;

end FIFO_EPTY;
all FIFO_THR extends IRQ_rw1toClr<0> is

description ‘‘The threshold in the FIFO
has been reached’’;

offset 2 bit;
end FIFO_THR;
all FIFO_FULL extends IRQ_rw1toClr<0> is

description ‘‘The FIFO is Full’’;
offset 3 bit;

end FIFO_FULL;
all FIFO_OF extends IRQ_rw1toClr<0> is

description ‘‘FIFO OverFlow IRQ’’;
offset 4 bit;

end FIFO_OF;
end FIFO_IRQs;

4.3 MoC: Full instantiated IRQ management
component for the FIFO

Hence, our system
PFIFO_IRQs = (Γ, F IFO_IRQs),
Γφ = { FIFO_IRQs },
Γ<φ> = { Reserved, IRQ_rw1toClr } can
be computed to get reduced into !FIFO_IRQs as
depicted by the following tree. Our compacted 50 lines
description, is computed into a RDO outputted flatten
file, 115 lines wide, fully RD compliant. Consequently,
as soon as FIFO_IRQs ∈ Γφ is reduced into a normal
form !FIFO_IRQs, we can use it as a core component
avoiding costly reductions.

all FIFO_IRQs is
description "FIFO IRQ lines management";
offset 0x0;
width 12 bit;
rw reserved is

description "Reserved. Reads return 0’s";
offset 5 bit;
reset 0x0;
width 7 bit;

end reserved;
rw FIFO_OF is

description "FIFO OverFlow IRQ";
offset 4 bit;
reset 0;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end FIFO_OF;

September 2004 – Dallas, TX 7 2004 c© Symposium on IC Design Verification

rw FIFO_FULL is
description "The FIFO is Full";
offset 3 bit;
reset 0;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end FIFO_FULL;
rw FIFO_THR is

description "The threshold in the FIFO
has been reached";

offset 2 bit;
reset 0;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end FIFO_THR;
rw FIFO_EPTY is

description "FIFO Empty IRQ";
offset 1 bit;
reset 1;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end FIFO_EPTY;
rw FIFO_UF is

description "FIFO UnderFlow IRQ";
offset 0x0;
reset 0;
width 1 bit;
ro FalseEvent is

description "The event is false";
reset 0x0;

end FalseEvent;
ro PendingEvent is

description "The event is true (pending)";
reset 0x1;

end PendingEvent;
wo UnchangedStatus is

description "The event status bit unchanged";
reset 0x0;

end UnchangedStatus;
wo ResetStatus is

description "The event status bit is reset";
reset 0x1;

end ResetStatus;
end FIFO_UF;

end FIFO_IRQs;

4.4 Reuse: Component managing the IRQs of
a module

This section aims at describing how to easily use the
IRQ management component defined above as a part of
a top component registers description using a FIFO, but
does not focus on a full description.

Be the following piece of registers specification of
the Camera Core module. All registers are 32-bit wide.

Register Offset Description
CC_REVISION 0x00 Revision Register

CC_IRQSTATUS 0x18 Interrupt Status Register
CC_IRQENABLE 0x1C Interrupt Enable Register
CC_FIFODATA 0x4C FIFO Data Register

CC_TEST 0x50 Test Register

The piece of specification below of the
CC_IRQSTATUS register depicts the ranges af-
fected for the three main sub-modules of the Camera
Core IP.

/* the file includes the template form Reserved */
include ‘‘common.rd’’

/* the fully instantiated form FIFO_IRQs is imported */
import ‘‘FIFO_IRQs’’

/* The form should have got declared in the file common.rd */
all XXXXxxxxRegisterWidth is

width 32 bit;
end XXXXxxxxRegisterWidth;

template < RESET, N, OFFSET >
ro ReservedDoNotWrite extends Reserved<N, OFFSET > is

description ‘‘Reserved. Do Not Write’’;
reset RESET;

end ReservedDoNotWrite;

all IRQSTATUS extends XXXXxxxxRegisterWidth is
description ‘‘Interrupt Status Register’’;

September 2004 – Dallas, TX 8 2004 c© Symposium on IC Design Verification

all FIFO extends FIFO_IRQs is
offset 0x0;

end FIFO;
all reserved extends Reserved

<16 - 12, 12>
end reserved;
all PARALLEL ... end PARALLEL;
all reserved extends Reserved

<26 - 20, 20>
end reserved;
all SERIAL ... end SERIAL;
all reserved extends ReservedDoNotWrite

<0b11, 2, 30>
end reserved;

end IRQSTATUS;

main all CameraCore is
description ‘‘Camera Core Registers’’;
ro CC_REVISION ... end CC_REVISION;
rw CC_IRQSTATUS extends IRQSTATUS is

offset 0x18;
end CC_IRQSTATUS;
rw CC_IRQENABLE ... end CC_IRQENABLE;
rw CC_FIFODATA ... end CC_FIFODATA;
ro CC_TEST ... end CC_TEST;

end CameraCore;

5 Purposed targeted outputs

As aforesaid, we can generate some code from the
unique checked registers database, according to the tar-
gets. This section shows some piece of outputted code
coming from the underflow IRQ.

5.1 C check library

Xxxxx generates a C library especially focusing on
register check. The piece of code below highlights the
basic tests given to the validation phase. Algorithms im-
plemented within each function are given by XX accord-
ing to the needs. We especially want to check:

power-on-reset values , checked when the system is
powered up to ensure that the read value coming
from the RTL is equal to the one foreseen by the
spec owner.

access types , checked to ensure that a read-only regis-
ter cannot be written, or that a read-write register
can genuinely get written

custom access type like read-write-1toClear to ensure
that the RTL is aligned with this special behavior.
The example below depicts this case.

void CameraCoreRegisterIntegrityTest
(UWORD32 baseAddress);

void CameraCoreRegisterIntegrityRW0ToSetTest
(UWORD32 baseAddress);

void CameraCoreRegisterIntegrityRW1ToSetTest
(UWORD32 baseAddress);

void CameraCoreRegisterIntegrityRW0ToClrTest

(UWORD32 baseAddress);
void CameraCoreRegisterIntegrityRW0ToClrTest

(UWORD32 baseAddress);
void CameraCoreRegisterIntegrityRW1TogPerBitTest

(UWORD32 baseAddress);

5.2 C library

Xxxxx generates C library to allow validation user to
read and write registers directly using an API. General
header files contain the base addresses of each IP. The
end-user can therefore easily include in his hand-written
test-case the header file containing the base addresses of
the wanted view: for XXXXxxxx, these basic views are
either ARM11 or DSP.

[...]
#define CC_IRQSTATUSFIFOFIFO_UFRead32(baseAddress)\
(_DEBUG_LEVEL_1_EASI(\

EASIL1_CC_IRQSTATUSFIFOFIFO_UFRead32),\
(((RD_MEM_32_VOLATILE(((UWORD32)(baseAddress))\

+(CC_IRQSTATUS_FIFO_OFFSET))) &\
CC_IRQSTATUS_FIFO_FIFO_UF_MASK) >>\
CC_IRQSTATUS_FIFO_FIFO_UF_OFFSET))

[...]
#define CC_IRQSTATUSFIFOFIFO_UFWrite32(\
baseAddress,
value

)\
{\
const UWORD32 offset = CC_IRQSTATUS_FIFO_OFFSET;\
register UWORD32 data = RD_MEM_32_VOLATILE(
((UWORD32)(baseAddress))+offset);\
register UWORD32 newValue = ((UWORD32)(value));\
_DEBUG_LEVEL_1_EASI(\

EASIL1_CC_IRQSTATUSFIFOFIFO_UFWrite32);\
data &= ~(CC_IRQSTATUS_FIFO_FIFO_UF_MASK);\
newValue <<= CC_IRQSTATUS_FIFO_FIFO_UF_OFFSET;\
newValue &= CC_IRQSTATUS_FIFO_FIFO_UF_MASK;\
newValue |= data;\
WR_MEM_32_VOLATILE((UWORD32)(baseAddress)\
+ offset, newValue);\

}
[...]

The piece of code above defines a C-ANSI macro to
read and write a 32-bit wide FIFO data. The base ad-
dress must be given as parameter since separate header
files can be included, each containing a different base
address according to the desired view. We can notice
that the level of hierarchy is kept through the macro
identifier, even if it lacks of readability.

This effective lack of readability led on a pure hier-
archal approach prototype, taking advantages from the
syntax of the C language.

5.3 Hierarchal C tree

Indeed, C has a struct statement which is used to
add more readability and structure. This structured view

September 2004 – Dallas, TX 9 2004 c© Symposium on IC Design Verification

is built over the approach presented above to link the
read/write field to the right flat function. The piece of
code below depicts the header file to be included before
using the tree. For example, the simplest way to clear
the FIFO_UF interrupt is:

CameraSS.CameraCore.CC_IRQSTATUS.FIFO.FIFO_UF.ResetStatus.write()

This hierarchal tree is very accurate and genuinely fit
the generated relative documentation, since the source
file is unique for this couple of generated purposed tar-
gets.

struct CameraSS_struct {
struct {
struct {

struct {
UWORD32 (*read)(void);
void (*write)(UWORD32);
[...]
struct {

UWORD32 (*read)(void);
void (*write)(UWORD32);
struct {
UWORD32 (*read)(void);

} FalseEvent;
struct {
void (*write)(void);

} UnchangedStatus;
struct {
UWORD32 (*read)(void);

} PendingEvent;
struct {
void (*write)(void);

} ResetStatus;
} FIFO_UF;

} FIFO;
} CC_IRQSTATUS;

} CameraCore;
} CameraSS;

5.4 E code

Xxxxx currently generates E code to check the reg-
isters with XxxxXxx, according to custom XX features.
Here is thus highlighted a major feature of this approach:
as soon as the data are captured once and for all in a
unique database, we have the possibility to run a custom
generator. In the future we will be able to write ourselves
our own tactical generators.

5.5 Documentation output

This section is especially devoted to TRM teams. The
outputted file is ought to be read by humans, formatted
according to XX guidelines driven by publishing rules.
This kind of outputted format can be RTF/DOC (MS-
Word application), PDF/PostScript, HTML or other cus-
tom formats like InterLeaf or FrameMaker.

For our prototyping purposes, this feature has been
addressed through LATEX2e, using an IEEE layout pack-
age, to generate PostScript, PDF or any other human-
oriented format taking LATEXor PDF as input.

Xxxxx xx is able to generate an high quality RTF
which was used within the final TRM.

5.6 Hierarchal Flat RD-XML

The aim of this subsection does not focus on the pre-
sentation of forte and weaknesses of the XML format.
We propose below a RD grammar over XML. The reader
interested in getting more information about the basic
XML format is highly invited to check out the W3C or-
ganization web-site [W3CWS].

This format is especially dedicated to exchange data
and furthermore well-suited to

1. handle gateways to import register captured data
coming from an another register formalism (e.g.
Xxxxx xx XML into RD)

2. handle gateways to import legacy code written to
capture registers in the past (e.g. ad-hoc XLS
spreadsheet into RD)

3. handle gateways to export register-oriented data
(e.g RD to Xxxxxx RTL.conf, RD to XxxxXX)

4. handle data capture through XML editors from the
market (e.g. XMLSpy, Morphon)

The piece of code below is generated for our trial pur-
posed crude example. We can notice that the tags are
really close to the pure RD keywords. We mustn’t be as-
tonished since XML can be seen as a front-end standard-
ized format, becoming a language over XML as soon as
a semantics is given to each tag.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Forms PUBLIC "" "[...]/rd.dtd">
<Forms>
<InstanceForm name="CameraSS" access="RW">

<InnerForm name="CameraCore" access="RW">
<offset>

<Hex value="0"/>
</offset>
<InnerForm name="CC_IRQSTATUS" access="RW">

<offset>
<Hex value="0"/>

</offset>
<InnerForm name="FIFO" access="RW">
<description>

<![CDATA[FIFO IRQ lines management]]>
</description>
<offset>

<Hex value="18"/>
</offset>

September 2004 – Dallas, TX 10 2004 c© Symposium on IC Design Verification

<width>
<BitUnit>

<Dec value="32"/>
</BitUnit>

</width>
<InnerForm access="RO" reserved="true">
<offset>

<BitUnit>
<Dec value="12"/>

</BitUnit>
</offset>
<width>

<BitUnit>
<BinaryExpressionPlus>

<BinaryExpressionMinus>
<Dec value="31"/>
<Dec value="12"/>

</BinaryExpressionMinus>
<Dec value="1"/>

</BinaryExpressionPlus>
</BitUnit>

</width>
<reset>

<Hex value="0"/>
</reset>
</InnerForm>
[...]
<InnerForm name="FIFO_UF" access="RW">

<description>
<![CDATA[FIFO UnderFlow IRQ]]>

</description>
<offset>

<Hex value="0"/>
</offset>
<width>

<BitUnit>
<Dec value="1"/>

</BitUnit>
</width>
<reset>

<Dec value="0"/>
</reset>
<InnerForm name="FalseEvent" access="RO">

<description>
<![CDATA[The event is false]]>

</description>
<reset>

<Hex value="0"/>
</reset>

</InnerForm>
[...]

</InnerForm>
</InnerForm>

</InnerForm>
</InnerForm>

</InnerForm>
</InstanceForm>

</Forms>

5.7 Gateway to Xxxxxx rtl.conf

Xxxxxx rtl.conf configuration files aim to capture OCP
data to automatically generate HDL and test patterns.
Some registers especially defined in the standard and XX
guidelines for the OCP buses programming are already
captured in any RD-oriented language. Xxxxxx added ex-
tensions to their proprietary format to also capture the
other registers.

root node ’CameraSS’ for registers dump

FIFO IRQ lines management
register FIFO {

param access_type rw
param reset_value 0x2
param base_address 0x18
param rw_mask 0x1F
param data_width 0x20

}

5.8 Xxxxxxxxxx XxxxxXX for debug

Xxxxxxxxxx is a famous german tool aiming to debug
hardware. Registers can be read and written according
to their access type thru a software GUI to program a
hardware platform connected to the computer. The piece
of file below shows how to program the GUI to declare
the FIFO register and its inner bit-fields.

tree "CameraSS"
tree "CameraCore"
base 0x0
tree "CC_IRQSTATUS"
base 0x0
tree "FIFO: FIFO IRQ lines management"
group 0x18--0x37
line.long 0x0 "value ,FIFO IRQ lines management"
textline ""
bitfld.long 0x0 4. "FIFO_OF ,FIFO OverFlow IRQ"
"FalseEvent, PendingEvent"

textline ""
bitfld.long 0x0 3. "FIFO_FULL ,The FIFO is Full"
"FalseEvent, PendingEvent"

textline ""
bitfld.long 0x0 2. "FIFO_THR ,The threshold in
the FIFO has been reached"
"FalseEvent, PendingEvent"

textline ""
bitfld.long 0x0 1. "FIFO_EPTY ,FIFO Empty IRQ"
"FalseEvent, PendingEvent"

textline ""
bitfld.long 0x0 0. "FIFO_UF ,FIFO UnderFlow IRQ"
"FalseEvent, PendingEvent"

tree.end
tree.end
tree.end

tree.end

6 Results

On a real hands-on example dedicated to highlight
the main features of this high level of registers’ capture,
we got the following figures:

modules number lines (RD) lines (Xxxxx xx)
shared 23 303 not handled
standalone 8 163 GUI captured

computed 1 983 1676

Remarks

September 2004 – Dallas, TX 11 2004 c© Symposium on IC Design Verification

• basically RD capture and Xxxxx xx capture can-
not be compared since in RD the capture is per-
formed with a textual editor, whereas with Xxxxx
the capture is handled with a graphical editor. We
can notice that with the textual editor, the useful
time is the one needed to enter the relevant infor-
mation which is the same as that captured with the
graphical editor, with an overhead in terms of key-
words. With the Xxxxx xx graphical editor the over-
head is composed of the time needed to move the
mouse and click on the different glyphs, and the
time needed to capture the shared information more
than once.

• this example depicts a fictitious Camera Sub-
System using an OCP shared library and two
modes, one for the Debug, and the other one for
the Regular behavior. It was developed to highlight
and to strengthen features.

• the Xxxxx xx was generated with a translator tak-
ing as input a RD description, following translation
rules between the high level Register Description
format and Xxxxx xx XML.

Summary

We have exposed how important it is to manage reg-
isters through a unique database to avoid discrepancies
between the TRM, the validation and other potential tar-
gets such as the RTL. Write-things-once leads on unify
from the specification, all possible targets, saving valu-
able resources.

We have also introduced a high level Register De-
scription format called RD to capture the main features
needed to work with registers. We have thus prototyped
translators, bridges between tools, different capturing
ways, and discussed a model of computation which aims
to strengthen the reuse feature, especially with shared li-
braries.

Xxxxx toolset offers a way to handle registers in this
direction. This approach was widely used to maintain
the XXXXxxxx registers and has encountered a real suc-
cess. However, this kind of tool involves several peo-
ple working on different stages of the flow, in differ-
ent world-wide sites, and is therefore ought to be driven
with strong processes and associated methodologies.

References

[XXBxxS04] Bertrand Blanc, Xxxxx xx, a subset of
Register Descritpion Definition, XX internal docu-
ment, 2004

[W3CWS] World Wide Web Consortium web-site,
http://www.w3.org

[BBRDSP04] Bertrand Blanc, Register Description Se-
mantics Proposal, XX internal document, 2004

[xxxxWS] Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

September 2004 – Dallas, TX 12 2004 c© Symposium on IC Design Verification

