
 SAME 2004, October 6th & 7th 2004 1

Multi-clock Design and Synthesis
with Esterel

Abstract:

We describe a practical method for multi-clock
design using the formal Esterel language and its
programming environment, which is normally
limited to single-clock design. The methodology
has been applied to two designs at TI. The designs
have been fully synthesized and verified.

Introduction

Esterel v7 [11] is a high-level language dedicated to
synchronous hardware and embedded software
programming. It is based on formal semantics
presented in [8,9], which makes it unambiguous
and synthesizable. The Esterel Studio tool provides
an integrated environment for program capture,
simulation, synthesis, and formal verification.
Esterel programs are built from combinationally
broadcast signals using concurrency, sequencing,
pausing, preemption, and communication
statements. All statements run on a unique base
clock, which is mapped to the hardware clock for
synchronous circuit designs. Here is a simple
Esterel program example:

module Example:
input I, Rst, Susp;
output X, Y;
loop
 suspend
 sustain X
 ||
 await 5 I;
 sustain Y
 when Susp
each Rst
end module

The internal concurrent statements behave as
follows: the sustain X statement keeps X high;
the concurrent sustain Y statement is only
activated in the cycle where the 5th occurrence of I
is received and it keeps Y high from then on. The
enclosing suspend statement freezes the internal
behavior and drives all outputs to inactive at each
cycle where Susp is set. Finally, the outermost
loop-each statement kills the behavior and
restarts it afresh at any cycle where Rst is set.

Esterel is being used for control-dominated
hardware designs by major electronics companies.
It is used by TI for applications such as memory
control, attachment interfacing, and power control.
In some applications such as video attachment
interfacing, the single-clock constraints appeared to
be too strong: designs involving a variety of
sensors and linked to software drivers by interfaces
such as OCP usually involve several asynchronous
clock zones linked by synchronizers designed to
avoid or control metastability issues. The goal of
this paper is to present a practical methodology to
extend Esterel to multiple clocks. Asynchronous
clocks are modeled as standard signals. Base clock
(tick) is made fast enough to independently capture
events from asynchronous input clock domains.
Esterel Studio is used to design each clock domain
as a classical single-clock block, and synchronizer
models are coded in Esterel based on the
conceptual base clock. For synthesis, the clock
domains are treated as independent single-clock
blocks and they are manually connected.

While similar to the multi-clock approaches
presented in [7,10], Esterel methodology is more
practical since it takes care of metastability issues
for inter-zone communications. It has been
successfully applied to two designs at TI.

How to build a multi-clock simulation
model with Esterel

To build an Esterel Studio simulation environment
for three-clock domains, we introduce three Esterel

 SAME 2004

SESSION 3B: HIGH-LEVEL SYSTEM DESIGN

Multi-clock Design and Synthesis with Esterel

S. Bernardi, S. Lebailly, Texas Instruments,
B. Blanc, G. Berry, J. Dormoy Esterel Technologies

Villeneuve-Loubet, France

 SAME 2004, October 6th & 7th 2004 2

signals clk1, clk2, and clk3 that act as domain
clocks. These signals are generated from the global
Esterel base clock by a clock generator module.
Each domain is represented by an Esterel module
constrained to work only when its clock signal is
active. Domains are directly connected to their
external IOs. They are connected with each other
using synchronizers described below. The global
architecture is shown in the picture below.

Clock generation
There are basically two ways for generating the
domain clock signals: putting them as global inputs
of the Esterel design, in which case they are fully
driven by the simulation environment; or building
them internally from the Esterel global tick, using
for example, Phase and Period parameters as in
the generator below:

module ClockGeneratorWithPhase:
constant Phase: integer;
constant Period: integer;
output Clock;
await Phase times tick;
loop
 emit Clock
each (Period/2) tick
end module

Here are the timing diagrams of two clocks with
different phases.

Two clocks that are free inputs or are generated by
two different instances of this module can occur
simultaneously, which is useful to model random

clock coincidence in the asynchronous world.
Using Esterel incompatibility relations such as
clk1 # clk2, one can forbid coincidence if
desired. Phase and Period generation does not
model dynamic skew, but is enough for most
practical purposes.

Driving clock zones
We must constrain each domain to work only when
its clock is active. This is exactly what the Esterel
suspend construct achieves. In a sense, the
suspend statement steals the tick to its body. The
following code does the job:

 run ClockGeneratorCLK1
||
 run ClockGeneratorCLK2
||
 suspend

run ClockDomainCLK1[…]
 when immediate not clk1
||
 suspend

run ClockDomainCLK2[…]
 when immediate not clk2

Resynchronization for inter-zone
communication
Esterel has pure and valued signals; for simplicity,
here we consider only the former. Pure signals in
Esterel are basically transient. They last one global
clock tick and are broadcast to all receivers in this
single clock tick. In our case, the global clock tick
is the simulation tick, while the receivers are
activated only by their domain clocks. Therefore, a
signal could be lost if its receiver clock is not active
at the global tick where it is emitted. We must make
it persistent until the receiver clock is active. Here
is how to transmit a signal from clock zone 1 to
clock zone 2:

signal
 o1, i2
in
 suspend
 run p1 [o1 / output1]
 when immediate not clk1
||
 suspend
 run p2 [i2 / input2]
 when immediate not clk2
||
 sustain {
 i2 <= o1 and clk1,
 i2 <= pre(o1) and not clk1
 }
end signal

Notice the use of the sequential pre operator to
keep the emitted value of output1 in o1.

clk1

clk2

tick
(toplevel)

clk1ClockGenerator:Shift

clk1ClockGenerator:Period

clk2ClockGenerator:Period

Clock

domain 1

Clock

domain 2

Clock
domain 3

I/O

I/O

resynchro resynchro

resynch

I/O

tick

clk3 clk2clk1

 SAME 2004, October 6th & 7th 2004 3

How to build the corresponding top-
level VHDL

The above described Esterel top-level is valid for
simulation and verification purposes only. It cannot
be dumped into RTL as is. We use the following
steps:

1) The modules of each clock domain are dumped

into separate HDL files. Each file contains an
entity with its own clock and reset signal.

2) We write a top-level VHDL entity that

instantiates the clock domain components. We
connect all ports, clocks, and resets. This is
currently done manually.

3) Within each clock domain, we perform

modular compiling from Esterel to VHDL.
This provides the following benefits:
• Better sequential optimization for each

module
• Considerable reduction of compilation and

synthesis time
• Better-synthesized logic

The drawbacks are:
• The signals used to communicate between

the VHDL components have to be
connected manually

• Esterel and VHDL model hierarchies do
not exactly match

The next generation of Esterel compilers developed
based on this experience will perform modular
compiling wiring automatically.

The following picture presents a possible
decomposition of Clock Domain 3:

Re-synchronizing clock domains in
Esterel

A signal sent from one clock domain to another one
arrives asynchronously w.r.t. the receiver’s clock,
possibly violating the destination flip-flop setup or
hold time; thus, causing a metastable condition and
propagation of non-binary signals to other parts of
the system [1-6]. The devices described below
avoid metastability.

The double-stage synchronizer
A double-stage synchronizer is the most widely
used method of stabilizing a signal in the
destination-clock domain. If the first flip-flop
enters the metastable condition, it has a full clock
period to stabilize before the second flip-flop
samples it. Only the second-stage value is
propagated to the other parts of the system.

Clock
Domain A

signal to
synchronize

clkB

signal
resynchronized

Clock
Domain B

In practice, it is indispensable to minimize the wire
propagation delay between the flip-flops and to
avoid inserting any logic in between.

In the Esterel design, the synchronization structures
must be implemented inside the control part. The
code we use for them is the following:

module Resynchro:
input R;
output D : reg;
signal R1 : reg in
 sustain next {R1 <= R,

vhdl top level

clk

clk

clk2

clk1

clk3

rst

clk
rst

rstA

rst

rstB

I/O I/O I/O

Clock
Domain
clk1

Clock Domain clk3

Clock
Domain
clk2

clk
rst

clk
rst

vhdl top level

clk

clk

clk2

clk1

clk3

rst

clk
rst
clk
rst

rstA

rst

rstB

I/O I/O I/O

Clock
Domain
clk1

Clock Domain clk3

Clock
Domain
clk2

clk
rst
clk
rst

clk
rst
clk
rst

Clock
domain 1

Clock
domain 2

Clock
domain 3

I/O

I/O

resynchro resynchro

resynchro

I/O

tick

clk3 clk2clk1
vhdl generation

Entity
Clock
domain 2

Entity
Clock
domain 3

vhdl
generation

vhdl generation

Entity
Clock
domain 1

port (
clk:
rst:

…..
)

Clock
domain 1

Clock
domain 2

Clock
domain 3

I/O

I/O

resynchro resynchro

resynchro

I/O

tick

clk3 clk2clk1

Clock
domain 1

Clock
domain 2

Clock
domain 3

I/O

I/O

resynchro resynchro

resynchro

I/O

ticktick

clk3clk3 clk2clk2clk1clk1
vhdl generation

Entity
Clock
domain 2

Entity
Clock
domain 3

vhdl
generation

vhdl generation

Entity
Clock
domain 1

port (
clk:
rst:

…..
)

vhdl top level

clk

clk

clk
clk2

clk1

clk3

rst

rst

rstA

rst

rstB

I/O I/O I/O

Clock
Domain
clk1

Clock
Domain
clk3

Clock
Domain
clk2

vhdl top level

clk

clk

clk
clk2

clk1

clk3

rst

rst

rstA

rst

rstB

I/O I/O I/O

Clock
Domain
clk1

Clock
Domain
clk3

Clock
Domain
clk2

 SAME 2004, October 6th & 7th 2004 4

 D <= R1}
end signal
end module

A more complex synchronization protocol
The double-stage synchronizer does not ensure that
the signal remains stable long enough for the
destination circuit to sample it once and only once.
This can be a problem if a system asserts a signal in
a fast source-clock domain and sends it to a very
slow destination clock domain. The source must
hold the signal for multiple clocks, for the logic of
the slower destination-clock domain to detect it. On
the other hand, if the system asserts a signal in a
slow clock domain and sends it to a very fast clock
domain, the receiver logic may detect the signal
multiple times, mistaking it for multiple events. A
handshake protocol such as the push synchronizer
[6] solves the problem. We have used an Esterel
implementation of it for another design.

The push synchronizer described in [6] comprises
two synchronization circuits that envelop the data
lines, implementing a complete handshake protocol.
The Request (R) and Acknowledge (A) lines are
synchronized by the receiver and sender
respectively. The two synchronizers connect two
simple finite state machines that implement the
required protocol. A send request (V, true for a
single cycle) latches data into REGs in the TX
clock domain and starts the transmitter FSM. The
synchronized request (R2) latches the data into
REGs in the RX clock domain and triggers the
receiver’s FSM. The receiver is given a single-
cycle “data-received” signal. The protocol is
sometimes modified so that A is set as soon as the
received data are latched, but removed only after
the receiver had had an opportunity to use the data.

Experiments up to synthesis

The multi-clock methodology and the
resynchronization methods described above have
been applied to two tests:

• The implementation of the push
synchronizer for data-exchange devices

• The design of a complex video IP

The handshake protocol

Description
The design is made of clock domains LSB and
MSB transferring 4-bits data (NumberOfBits = 4).
The LSB module receives an input bus
Inputs_data_LSB and an enable signal
Inputs_enable_LSB. When enable is set, LSB
latches the bus with its own clock, and sends it out
to MSB on LSB_data bus. The MSB module has
an input bus Inputs_data_MSB with an enable
Inputs_enable_MSB. When its enable is set, it
latches its input in a register with its clk_MSB
clock. It also resynchronizes the LSB_data bus
from the LSB module. MSB concatenates the
received LSB data with its own input data from
Inputs_data_MSB, and sends it out to Output_data
after a final re-sampling.

Esterel design
The Esterel simulation design uses three modules:
the clock generator, to create clk_LSB and
clk_MSB; the “clock domain LSB” module (TX);
and the “clock domain MSB” module (RX).
Synchronization is done using a push synchronizer.
The TX module contains a sender protocol FSM,
the synchronization registers producing the
acknowledge signal A and the register latching the
transmission data; the RX module contains the
receiver protocol FSM, the resynchronization
registers for the request signal R, and the output
register to latch the data coming from TX side.

 SAME 2004, October 6th & 7th 2004 5

Simulations were run applying different clock
frequency relationships through the variation of the
clock generator parameters, showing correct
behavior.

Synthesis results
Two VHDL entities were generated for each clock
domain and they were connected in a top-level
VHDL. Synthesis was run with Synopsys Design
Compiler, 2003.03, and the comparison with the
hand-made VHDL showed no area overhead.
Simulation was run through a VHDL test-bench,
showing correct behaviors with all the frequency
relationships foreseen.

Video IP design
Description and Esterel design
A more complex design was chosen to further test
the methodology. The Video IP receives different
frame formats from two video interfaces, working
with different bus protocol and formats. It decodes
them and packs the pixels into different data
formats which are buffered into a FIFO and then
transmitted outside using an OCP interface.

Three clock domains are involved: two for the
video interfaces and one for the internal buffering
& data output. The design structure is shown

below:
A simulation framework has been implemented
with three clock generators and the three main
modules. The double-stage synchronizer has been
used to secure data writing from the video
interfaces to the buffering systems.

VHDL generation and synthesis results
A top-level VHDL has been created connecting the
different clock domain components and the clock
and reset pins have been connected to the core
clock/reset input pins. Synthesis has been run with
Synopsys Design Compiler, version 2003.03, and
the results have been compared to the one obtained
by the hand-written Verilog design, under the same
synthesis constraints. No DFT or timing issues have
been found, and a total 5% gain in area occupation
has been obtained. The table below reports the
percentage of gain in area occupation obtained for
the three clock domains.

Functional Clock -1.6%
Video Interface 1 26%
Video Interface 2 2.11%

The Esterel VHDL has been tested under a
Reference Test Bench developed for the Verilog
design, showing a correct behavior of the
resynchronization structures.

Conclusion
We have presented a practical methodology for
multi-clock design using Esterel. Individual clock
domains are modeled and synthesized using the
current Esterel Studio tool.

For system modeling, clocks are viewed as standard
signals in a global Esterel simulation design, and
communication synchronizers are created from
Esterel modules.

For synthesis, individual clock domains are
synthesized using the standard Esterel flow and
linked by manually written HDL code. The overall
methodology could be automated further in
upcoming versions of Esterel Studio.

Bibliography
[1] – J.Jex and C.Dike, “A fast resolving BiNMOS
synchronizer for parallel processor interconnect”,
IEEE Journal of Solid-State Circuits, vol. 30,
pp.133-139, 1995.
[2] – D.J.Kinniment, A. Bystrov and A. Yakovlev,
“Synchronization Circuit Performance”, IEEE
Journal of Solid-State Circuits, vol. 37, pp.202-
209, 2002.

Video Interface 1

FIFO
and

buffering
control

Video Interface 2

Configuration
port

output port

64 bits

Video Interface 1
clock domain

Video Interface 2
clock domain

Functional
clock

domain
Configuration

registers

Frame
Processing and

resynchronization
Frame

Processing and
resynchronization

Output
Protocol
controller

Video Interface 1

FIFO
and

buffering
control

Video Interface 2

Configuration
port

output port

64 bits

Video Interface 1
clock domain

Video Interface 2
clock domain

Functional
clock

domain
Configuration

registers

Frame
Processing and

resynchronization
Frame

Processing and
resynchronization

Output
Protocol
controller

Clock Domain LSB
Clock Domain MSB

Inputs.Data

D

F

V

tick tick

SynchronizedDataDataIn

Inputs.Enable

GoOn

Inputs

SenderProtocol

LSBProtocol

Inputs

DataOut

AR

LSB
MSB

DataReady

DataIn

LSBclk MSBclk
Clock Domain Tick

tick

ReceiverProtocol

MSBProtocol

Clock Domain LSB
Clock Domain MSB

Inputs.Data

D

F

V

tick tick

SynchronizedDataDataIn

Inputs.Enable

GoOn

Inputs

SenderProtocol

LSBProtocol

Inputs

DataOut

AR

LSB
MSB

DataReady

DataIn

LSBclk MSBclk
Clock Domain Tick

tick

ReceiverProtocol

MSBProtocol

 SAME 2004, October 6th & 7th 2004 6

[3] – W.J.Dally and J.W.Poulton, Digital System
Engineering (Eds.): Cambridge University Press,
1998.
[4] – T.H.-Y.Meng, Synchrnonization Design for
Digital Systems (Eds.): Kluwer Academic
Publishers, 1991.
[5] – D.J.Kinniment and J.V.Woods,
“Synchronization and Arbitration Circuits in
Digital Systems”, Proceedings of IEE, vol. 123, pp
961-966, 1976.
[6] – R. Ginosar, “Fourteen ways to Fool your
Synchronizer”, VLSI Systems Research Center,
Technion – Israel Institute of Technology, 2003.
[7] Basant Rajan, R. K. Shyamasundar: Multiclock
Esterel: A Reactive Framework for Asynchronous
Design. IPDPS 2000: 201-210
[8] G. Berry, The Foundations of Esterel, in Proof,
Language, and Interaction, Essays in Honour of
Robin Milner, MIT Press, YEAR="2000"
[9] G. Berry, The Constructive Semantics of Pure
Esterel, draft book available at www.esterel-
technologies.com, 2000
[10] G. Berry, E. Sentovich, Multiclock Esterel,
Proc. CHARME'2001, Edinburgh, Springer-Verlag
LNCS 2144.
[11] Esterel Technologies, The Esterel v7
Reference Manual, available at
www.esterel-technologies.com, 2002

