
Register Description – DRAFT 0.5

Bertrand B. Blanc
bertrand.blanc@xx.com

 2004 c©

Contents

1 Definitions 4
1.1 Product and Sets . 4
1.2 Forms . 4
1.3 Template Forms . 6

1.3.1 Inheritance Status . 7
1.4 Miscellaneous . 8

1.4.1 Sets . 8
1.4.2 Reductions & Expansions . 8
1.4.3 Substitutions . 8

1.5 Example . 9

2 Model of Computation 11
2.1 Rule 1: x-expansion →x . 11

2.1.1 Expansion of a form φ ∈ Γφ . 11
2.1.2 Expansion of a template form < φ >∈ Γ<φ> . 11

2.2 Rule 2: d-expansion (distributivity) →d . 11
2.2.1 Distributivity on an expanded form φ ∈ Γφ . 11
2.2.2 Distributivity on an expanded template form < φ >∈ Γ<φ> 12

2.3 Rule 3: r-reduction →r . 12
2.4 Rule 4: inheritance . 12

2.4.1 ε-expansion →ε . 12
2.4.2 µ-reduction →µ . 14
2.4.3 Access refinement in inner forms . 14
2.4.4 r-reduction . 14

2.5 Rule 5: instantiation . 14
2.5.1 Examples . 15
2.5.2 Demonstrations . 16

2.6 Form reduction: φ ∈ Γφ →∗ !φ . 18
2.7 Template form reduction: < φ >∈ Γ<φ> →∗ !φ . 18
2.8 Example . 19

2.8.1 Declaration of the set Γ . 19
2.8.2 < MAJOR | κ >+ →∗ !MAJORκ, MAJOR ∈ Γ<φ>, κ ∈ { 0xB0, 0xA0 } 21
2.8.3 < MINOR | κ >+ →∗ !MINORκ, MINOR ∈ Γ<φ>, κ ∈ { 0xB1, 0xA1 } 21
2.8.4 < RegWidth >+ →∗ !RegWidth . 21
2.8.5 < RESERV ED >+ →∗ !RESERV ED . 21
2.8.6 < REV | { φ1, φ2 } >+ →∗ !REVinst, REV ∈ Γ<φ> 21

1

2.8.7 < Foo >+ →∗ !Foo . 21

3 Language Definition 24
3.1 EBNF Grammar . 24

3.1.1 Expressions . 24
3.1.2 Form . 24
3.1.3 Template Form . 25
3.1.4 Inner Form . 25
3.1.5 Product . 25

3.2 Modular Compiling . 25

4 Example of an IRQ management module 27
4.1 Generic read / write 1 to clear form declaration . 27
4.2 Declaration of an IRQ management module . 28
4.3 Fully instantiated IRQ management component for the FIFO . 29
4.4 Component managing the IRQs of a module . 31

2

1 Definitions

1.1 Product and Sets

A product P is a couple composed of a context Γ and a root node ν: P = (Γ, ν). Γ is the environment of P,
also called the context of P. Γ is composed of a set of forms Γφ and a set of template forms Γ<φ> which can be
instantiated through the items of Γφ: Γ = Γφ ∪Γ<φ> ⊆ Φ, Γφ ∩Γ<φ> = ∅. The set Φ is the set of all the possible
forms i.e. encapsulates all possible register description. The root ν is obviously an item of Γφ: ν ∈ Γφ.

1.2 Forms

A form φ ∈ Γφ or an inner form φ ∈ Γψ tuning ψ ∈ Φ is represented as:

φ = α (εi | T
ε
i)i∈Im

!A (φi | T
φ
i)i∈Iu

︸ ︷︷ ︸

Γφ

where

α ∈ A the access type. The set A is currently composed of 4 basic access types
1. ro read-only
2. wo write-only
3. rw read-write
4. all matches any access

(εi | T
ε
i)i∈Im

an ordered set of extentions inherited by φ indexed by i
m ∈ N is the number of extensions. If m = 0, then the set

(εi | T
ε
i)i∈Im

is reduced into ∅
∀i ∈ J1,mK, εi ∈ Γ εi is either a form

or an instantiation of a template form
T εi , i ∈ I∗m is the ordered set of values given to the template form ε ∈ Γ<φ>

to instantiate it. If T εi = ∅, then εi ∈ Γφ
!A represents the attributes of the form. The exclamation mark means that

these attributes, if they are defined, are set with a final value.
Follow the current attributes δ, ρ, o, ω masked by the generic A

1. !δ the description of φ
2. !ρ the reset value of φ
3. !o the offset of φ, !o ∈ N
4. !ω the width of φ, !ω ∈ N∗

(φi | T
φ
i)i∈Iu

an ordered set of inner forms refining the registers description of φ.

φ ∈ Γφ

u ∈ N is the number of inner forms. If u = 0, then the set
(φi | T

φ
i)i∈Iu

is reduced to ∅
∀i ∈ J1, uK, φi ∈ Γφ φi /∈ Γ, φi ∈ Γφ.
T φi , i ∈ I∗u T φi = ∅

(φi | T
φ
i)i∈Iu

an ordered set of inner forms refining the registers description of ψ.

φ ∈ Γψ

u ∈ N is the number of inner forms. If u = 0, then the set
(φi | T

φ
i)i∈Iu

is reduced to ∅
∀i ∈ J1, uK, φi ∈ Γφ φi /∈ Γ, φi ∈ Γφ.
T φi , i ∈ I∗u is the ordered set of values given to φi to perform its

inner instantiation.
T φi = ∅ if @ψ ∈ Γ<φ> / ψ →∗ φ

T φi = ∅ if φ ∈ Γφ

4

Property 1: contiguity coherency

Be ψ = α ∅ A (φi)i∈I∗u , ψ ∈ Φ with o ∈ A and ω ∈ A.

Then, once the width attribute is set within a form, it must be equal to the sum of the widths recursively computed
on the inner-forms tuning this form.

ω =

u∈N
∗

∑

i=1

φi.ω

However, we sometimes need to let blank bit-fields to capture for example remote registers. These special
bit-fields cannot indeed be tuned with inner forms.

Property 2: range coherency

Two inner-forms refining a form cannot overlap.

Be ψ = α ∅ A (φi)i∈I∗u , ψ ∈ Φ.

We need to introduce here a bounded range [λb, λe] in which ψ evolves i.e. ψ set bits, not necessary contiguous
within the range [λb, λe]. Such a range is noted [ψ.λb, ψ.λe].

Then, ∀i ∈ I∗u, ∀j ∈ I∗u\{i}, [φi.λb, φi.λe] ∩ [φj .λb, φj .λe] = ∅

Property 3: overlap coherency

The above property 2 avoids any overlap between two forms. However, the form overlap is sometimes needed.
Two behaviors have got exhibited.

Property 3.1: dual forms

Two forms φ1 ∈ Φ and φ2 ∈ Φ\{φ1} are dual if and only if

(i) the both inner-forms are not refined Γφ1 = Γφ2 = ∅
(ii) the both inner-forms have the same defined

offset
φ1.o = φ2.o

(iii) the both inner-forms have the same defined
width

φ1.ω = φ2.ω

(iv) the both inner-forms refine the same form ∃ψ ∈ Φ / φ1 ∈ Γψ ∧ φ2 ∈ Γψ

Property 3.2: modal forms

We need to introduce here a modal attribute β ∈ M in order to tag a form φ ∈ Φ as follow:

φ = β α ∅ !A (φi)i∈Iu

Two forms φ1 ∈ Φ and φ2 ∈ Φ\{φ1} are modal if and only if
(i) modes are identical φ1.β 6= φ2.β
(ii) offsets are the same φ1.o = φ2.o
(iii) widths are the same φ1.ω = φ2.ω
(iv) the both modal inner-forms refine the same

form
∃ψ ∈ Φ / φ1 ∈ Γψ ∧ φ2 ∈ Γψ

5

1.3 Template Forms

A template form < φ >∈ Γ<φ> is represented as:

< φ > = (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

︸ ︷︷ ︸

Γφ

where

(τi)i∈In
the ordered set of final abstract items (basic τi) or constrained abstract item (τi matches χ → τi, χ ∈ Γ
means that when instantiate, this item must be compliant with χ)
needed in the body of < φ > to instantiate it. n 6= 0 since < φ >∈ Γ<φ>.

α ∈ A the access type. The set A is currently composed of 4 basic access types
1. ro read-only
2. wo write-only
3. rw read-write
4. all matches any access

(εi | T
ε
i)i∈Im

an ordered set of extentions inherited by < φ > indexed by i
m ∈ N is the number of extensions. If m = 0, then the set

(εi | T
ε
i)i∈Im

is reduced into ∅
∀i ∈ J1,mK, εi ∈ Γ εi is either a form or an instantiation of a template form or

an abstract item τ ∈ (τi)i∈In
aimed to be instantiated

with an item of Γ.
T εi , i ∈ I∗m is the ordered values or abstract values τ ∈ (τi)i∈In

given to the
template form εi ∈ Γ<φ> to instantiate it.
If T εi = ∅, then either εi ∈ Γφ or εi ∈ (τi)i∈In

.
If εi ∈ (τi)i∈In

and τi χ− constrained, then εi is χ− typed
A represents the attributes of the template form. These

attributes, if they are defined, are set with either a final value or an abstract
value τ ∈ (τi)i∈In

. Follow the current attributes δ, ρ, o, ω masked by the generic A
1. [δ|τ] the abstract description of < φ >, τ ∈ (τi)i∈In

2. [ρ|τ] the abstract reset value of < φ >, τ ∈ (τi)i∈In

3. [o|τ] the offset of < φ >, τ ∈ (τi)i∈In

4. [ω|τ] the width of < φ >, τ ∈ (τi)i∈In

5. !δ the instantiated description of < φ >
6. !ρ the instantiated reset value of < φ >
7. !o the instantiated offset of < φ >, o ∈ N
8. !ω the instantiated width of < φ >, ω ∈ N∗

(φi | T
φ
i)i∈Iu

an ordered set of inner forms refines the registers description of < φ >.
u ∈ N is the number of inner forms. If u = 0, then the set

(φi | T
φ
i)i∈Iu

is reduced to ∅
∀i ∈ J1, uK, φi ∈ Γφ φi ∈ Γφ, where Γφ represents

the set of inner refinements.
T φi , i ∈ I∗u is the oredered set composed of either final values or abstract value τ ∈ (τi)i∈In

given to φi to perform the instantiation
of inner components recursively. T φi = ∅ if (τi)i∈In

do not impact Γφ

6

1.3.1 Inheritance Status

Some inner forms φi ∈ Γφ are ought to mandatory be defined when inherited. To ensure that the form will be
refined in the caller, the form is declared in the callee as an abstract inner form. Such a form is noted in the callee as
φ̂i ∈ Γφ.

7

1.4 Miscellaneous

1.4.1 Sets

1. C = A ∪ B ≡ (∀x ∈ C, x ∈ A ∨ x ∈ B) ∧ (∀x ∈ A, ∀y ∈ B, {x, } ∈ C2)

2. C = A ∩ B ≡ (∀x ∈ C, x ∈ A ∧ x ∈ B) ∧ (∀x ∈ A / x ∈ B, x ∈ C)

3. A ∩ B = ∅ ≡ ∀x ∈ A, ∀y ∈ B, x /∈ B ∧ y /∈ A

4. (xi)i∈In

(i) i = 0 ⇒ (xi)i∈In
= ∅

(ii) i 6= 0 ⇒ (xi)i∈In
= (xi)i∈I∗n

(iii) is an ordered set (if defined) indexed by i ∈ J1, nK: { x1, x2, . . . , xn }

1.4.2 Reductions & Expansions

1. The form a is reducted into b in a single step, applying a rule. Seven rules are defined beyond in the section devoted
to the Model of Computation.

a → b ≡ ∃t ∈ {x, r, d, ε, µ, τ, σ} / a →t b

2. The form a is reducted into b in at least one step.

a →+ b ≡ ∃c ∈ Φ / a → c →∗ b

3. The form a is either reducted into b in at least one step, or is already reducted.

a →∗ b ≡ ∃n ∈ N, ∃(ci)i∈N /

(i) n = 0 ⇒ a ∼ b

(ii) n 6= 0 ⇒ (a →+ b ≡ a → c1 → . . . → cn → b)

4. The form a is reducted into its fully reducted normal form in either at least one step, or is already reducted.

a →∗ !a ≡ (@φ ∈ Φ / !a → φ) ∧ (!a ∼/ φ)

5. The couple of forms a and b are equivalent each other modulus basic expansion and reduction rules.

a ∼ b ≡ a →x,r b

6. Corollary of the item above.
a ∼/ b ≡ ∃t ∈ { d, ε, µ, τ, σ} / a →t b

1.4.3 Substitutions

The substitution operator is basically noticed [X | Y] where x is a set to get substituted and Y a set of items of
substitution.

1. the semantics of this operator depends on the type of the sets represented by X and Y

2. a singleton can either be noticed {x} or x if a set is expected according to the type-check. Discarding braces
prevents verbosity

3. if sets size is greater than 1, a binary associative law must be defined

8

1.5 Example

Follow five examples to highlight the definitions above:

1. P = (Γ, φ1), φ1 ∈ Γφ
The product P is composed of a set Γ of forms (Γφ) and a set of template forms (Γ<φ>). Γ is the union of Γφ
and Γ<φ>. The node φ1 is the root and is obviously an item of Γφ.

2. Γφ = {φ1}, Γ<φ> = {φ2}, Γ = Γφ ∪ Γ<φ> = {φ1, φ2}, Γφ ∩ Γ<φ> = ∅
The set of forms Γφ is a singleton only composed of φ1. The set of template forms Γ<φ> is a singleton only
composed of φ2. Γ is therefore the set composed of these both items φ1 and φ2.

3. φ2 = {τ} α2 ∅ [ρ|τ] ∅, α2 ∈ A

φ2 is a template form and thus matches the representation

(τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

• (τi)i∈In
= {τ}, then n = 1, and τ1 = τ

• α = α2 is obviously a valid access type since α2 ∈ A

• (εi | T
ε
i)i∈Im

= ∅, then m = 0

• A = [ρ|τ], then the reset value ρ is abstracted and will be instantiated as soon as the template form< φ >
will be instantiated with obviously one parameter τ . This template form has no description δ, no offset o
and no width ω

• (φi | T
φ
i)i∈Iu

= ∅, means u = 0 and Γφ2 = ∅.

4. φ1 = α1 {φ2|κ} !δ1 {φ11}, α1 ∈ A, φ11 ∈ Γφ1 , κ is a reset value

α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

• α = α1 is obviously a valid access type since α1 ∈ A

• (εi | T
ε
i)i∈Im

= {φ2|κ}, then m = 1, ε1 = φ2 ∈ Γ and T ε1 = κ which is a reset value. T ε1 6= ∅
ensures that ε1 = φ2 ∈ Γ<φ> ⊆ Γ.

Notice that if T ε1 = ∅, then the context would have been violated.

– First demonstration

(i) by assumption, φ2 /∈ Γφ
(ii) φ2 /∈ Γ<φ> since T ε1 = ∅
(iii)then φ2 /∈ Γφ ∪ Γ<φ>
(iv)then φ2 /∈ Γ#∀ε ∈ (εi)i∈Im

, ε ∈ Γ

– Second demonstration

(i) by assumption, φ2 ∈ Γ<φ>
(ii) φ2 /∈ Γ<φ> since T ε1 = ∅
(iii)then a contradiction is reached #

Moreover, φ2 is a template form which will be instantiated with one item. Indeed, φ2 has a single abstract
description field, which is coherent typed with κ.

• A = !δ1 ensures that φ1 has only a final description field, with neither any offset o, nor reset value ρ, nor
width ω. The sensitive reader would have right noticed the a reset value would have been indeed inherited
from φ2. However, The Model of Computation is not focused within this section.

9

• (φi | T
φ
i)i∈Iu

= {φ11}, means that u = 1, φ1 = φ11 (take care, this equation means that φ11 matches
φ1 which is here the first item of the inner forms set (φi | T

φ
i)i∈Iu

= Γφ1 of the form φ1 ∈ Γφ) and
T φ1 = ∅. The set Γφ1 of inner forms is declared as Γφ1 = {φ11} to tune the description of the form φ1.
T φ1 = ∅ ensures that this inner form do not need to instantiate deeper abstract items coming from φ1.

5. φ11 = α11 ∅ !δ11 !o11 ∅, α11 ∈ A
φ11 ∈ Γφ1 is a valid inner form, matching the same semantics depicted above for φ1

10

2 Model of Computation

For a product P = (Γ, ν), ν ∈ Γφ, this Model of Computation aims to reduce ν into a reducted normal form !ν
fully instantiated, following a set of reduction and expansion rules defined below. This MoC applied on ν is noted:

< ν >+ →∗ !ν, ν ∈ Γφ
< ν|T >+ →∗ !ν, ν ∈ Γ<φ>, T an ordered set of parameters needed to instantiate ν

2.1 Rule 1: x-expansion →x

The expansion is a syntactical rewriting wich expands an abstract item into an expression in order to perform further
operation.

2.1.1 Expansion of a form φ ∈ Γφ

φ = α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

, φ ∈ Γφ

< φ >+ →x < α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

>+

also noticed:

< α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

>+

< φ >+

2.1.2 Expansion of a template form < φ >∈ Γ<φ>

< φ > = (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

, φ ∈ Γ<φ>

< φ | T >+ →x < (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

| T >+

also noticed:

< (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

| T >+

< φ | T >+

2.2 Rule 2: d-expansion (distributivity) →d

The distributivity is a syntactical rewriting wich will inject an operation inside an expression in order to perform
this operation recursively.

2.2.1 Distributivity on an expanded form φ ∈ Γφ

< α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

>+→d < α (< εi | T
ε
i >

+)i∈Im
A (< φi | T

φ
i >

+)i∈Iu
>+

also noticed:

< α (< εi | T
ε
i >

+)i∈Im
A (< φi | T

φ
i >

+)i∈Iu
>+

< α (εi | T
ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

>+

11

2.2.2 Distributivity on an expanded template form < φ >∈ Γ<φ>

This rule is unforeseen and illegal. Indeed, distributing the operator < . >+ inside the template form is unrelevant
since some T εi or T φi can be abstracted. This operation could only be perform after getting all abstract item instantiated
with T . See the instantiation rule below. The template form will be computed into an instantiated form and we will
therefore be able to apply the same distributivity rule as the one defined above for φ ∈ Γφ

2.3 Rule 3: r-reduction →r

The reduction is a syntactical rewriting wich reduces a computed expression into an abstract item in order to meet
a known syntactical expression.

(i) inheritance reduction< εi|T
ε
i >

+ →r !εi also noticed
!εi

< εi|T
ε
i >

+

Notice that here is matched one and only one rule of the couple of basic rules< ν >+ → !ν, ν ∈ Γφ if T εi = ∅,
or < ν|T >+ → !ν, ν ∈ Γ<φ>.

(ii) inner form reduction< φi|T
φ
i >

+ →r !φi

Notice that here is matched the basic rule < ν|T >+ → !ν, ν ∈ Γφ.

(iii) the inheritance and instantiation rules will be deeper explain in their respective subsection.

type expansion reduction
inheritance ε-expansion µ-reduction

instantiation τ -expansion σ-reduction

2.4 Rule 4: inheritance

2.4.1 ε-expansion →ε

This ε-expansion is only managed under the following assumptions:

(i) the inherited forms are reduced into a reducted normal form !εi, εi ∈ Γ

(ii) the attributes are fully instantiated !A

(iii) the inner forms are reduced into a reducted normal form !φi, φi ∈ Γφ

(iv) φ is either a form, or an inner-form, or an instantiated form.

φ ∈ {φ′ / (φ′ ∈ Γφ) ∨ (< ψ|T >+ = φ′, ψ ∈ Γ<φ>) ∨ (φ′ ∈ Γφ)}

< α (!εi)i∈Im
!A (!φi)i∈Iu

>+ →ε [α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

]

[α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

]
< α (!εi)i∈Im

!A (!φi)i∈Iu
>+

where

[α | (!εi)i∈Im
]: the reduced access type α′ ∈ A is associatively computed according to the primal access type α of φ

and the inherited ones as: [α | (!εi)i∈Im
] = [. . . [[α | !ε1]|!ε2] . . . |!εm]

12

α !εi.α, i ∈ I∗m α′ = [α | !εi.α]
all all all
all ro ro
all wo wo
all rw rw
ro all ro
ro ro ro
ro wo ⊥
ro rw ⊥
wo all wo
wo ro ⊥
wo wo wo
wo rw ⊥
rw all rw
rw ro ⊥
rw wo ⊥
rw rw rw

∅: Inherited forms did obviously disapper since they have been merged within φ.

[!A | (!εi)i∈Im
]: The attributes are associatively computed, merging the attributes of φ with the ones inherited as

depicted below. [!A | (!εi)i∈Im
] = [. . . [[!A|!ε1] |ε2] . . .].

!A !εi.!A, i ∈ I∗m !εj .!A, j ∈ I∗m \ {i} !A′ comment
> {>, ⊥} {>, ⊥} !A overload
⊥ > > ⊥ inheritance conflict
⊥ > ⊥ !εi.!A inheritance
⊥ ⊥ ⊥ ⊥ undefined

[(!φi)i∈Iu
| (!εi)i∈Im

]: The set of inner forms will be grown up with the inherited inner forms coming from (εi)i as
depicted below.

!φi ∈ Γφ !εi.!φ ∈ Γ!εi !εj .!φ ∈ Γ!εj !φ′ comment
i ∈ I∗u i ∈ I∗m j ∈ I∗m \ {i}

⊥ > ⊥ !εi.!φ inheritance !εi.!φ ∈ Γφ

⊥ ⊥ ⊥ ⊥ undefined
⊥ > > ⊥ conflict
> > ⊥ µ[!φi|!εi.!φ] inheritance merge (µ-reduction)
> ⊥ ⊥ !φi basic definition
> > > µ[!φi|!εi.!φ, !εj .!φ] inheritance merge (µ-reduction)

Mandatory Inner Forms ψ̂ ∈ Γφ: The mandatory inner forms are expected to be defined when inherited, following
the rule:

!ψ ∈ Γφ !ε.!̂φ ∈ Γ!ε status comment
> > > declared in the callee and defined in the caller
> ⊥ > no mandatory inner form declared in the callee
⊥ > ⊥ declared in the callee but nor defined in the caller
⊥ ⊥ > neither declared nor defined

13

2.4.2 µ-reduction →µ

µ[!φa|!φb] and µ[!φa|!φb, !φc] are the merging operator defined as follow, computing a merged inner instance form
!φµ ∈ Γφ, either overloaded, or refined.

µ[!φa|!φb, !φc]
(i) !φµ.α = [!φa.α|!φb.α, !φc.α] access type definition and refinement
(ii) !φµ.!A = [!φa.!A|φb.!A, !φc.!A] attributes definition
(iii) !φµ.Γ

φµ = [!φa.Γ
φa |!φb.Γ

φb , φc.Γ
φc] inner forms definition

µ[!φa|!φb]
(iv) !φµ.α = [!φa.α|!φb.α] access type definition and refinement
(v) !φµ.!A = [!φa.!A|!φb.!A] attributes definition
(vi) !φµ.Γ

φµ = [!φa.Γ
φa |!φb.Γ

φb] inner forms definition

2.4.3 Access refinement in inner forms

The access mode of the inner forms ψ ∈ Γφ is also refined in order to be aligned with the access type of φ. The
following table define the access refinement.

φ.α ψ.α [φ.α|ψ.α]
all all all
all ro ro
all wo wo
all rw rw
ro all ro
ro ro ro
ro wo ⊥
ro rw ro
wo all wo
wo ro ⊥
wo wo wo
wo rw wo
rw all rw
rw ro ro
rw wo wo
rw rw rw

2.4.4 r-reduction

Consequently, we can thereafter perform a syntactical r-reduction:

[α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

] →r α′ ∅ !A′ (!φ′i)i∈Iu′

α′ ∅ !A′ (!φ′i)i∈Iu′

[α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

]

2.5 Rule 5: instantiation

The τ -expansion rule aims to inject values within a template form φ ∈ Γ<φ> in order to instantiate it.

14

< (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

| T >+→τ< α (εi | σ(T εi , T))i∈Im
σ(A, T) (φi | σ(T φi , T))i∈Iu

>+

< α (εi | σ(T εi , T))i∈Im
σ(A, T) (φi | σ(T φi , T))i∈Iu

>+

< (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

| T >+

where

(εi | (σ(T εi , T))i∈Im
: The inherited forms instantiation setting up the abstract values within the templates forms.

example T εi , i ∈ Im σ(T εi , σ
′(T))

1 ∅ ⇔ m = 0 ∅
2 κ a final instantiated value κ
3 T ′ ∈ Γφ < T ′ >+

4 T ′ ∈ Γ<φ> < T ′|T ′′ ⊆ σ′(T) >+, #T ′′ = #T ′.(τi)i
5 τ ∈ (τi)i∈In

!θ / ∃j ∈ I∗n, ∃k ∈ I#T ε
i
, ∃ t′k ∈ T εi = τj ∈ (τi)i

∧ T = (t′′i)I∗#T
, t′′j = θ

∧ θ →∗ !τ
6 (ψ → τ) ∈ (τi)i∈In

!θ / ∃j ∈ I∗n, ∃k ∈ I#T ε
i
, ∃ t′k ∈ T εi = τj ∈ (τi)i

∧ T = (t′′i)I∗#T
, t′′j = θ

∧ !θ ∼ ψ

demonstration T σ′(T)
∅ ∅

κ a final instantiated value κ
(ti)i (σ′(ti))i

T ′ ∈ Γφ T ′ already reduced
1 T ′ ∈ Γ<φ> T ′ already reduced. This case is hence illegal.

2.5.1 Examples

This section practicaly highlights the mathematical model above. The following set Γ composed of template-
forms, instance-forms and inner-forms will be used in each examples.

RegW = all {} (w=32) {}
range = {MAX, MIN, RESET} all {RESET} [o|MIN] [w|MAX-MIN+1] {}
dflR = all {} (r=0x0) {}
reset = {RESET} all {} [r=RESET] {}
REV = {MAX, MIN} ro {RegW | {}} { pad | {}, Max | {MAX}, Min | {MIN} }
pad = ro {range | {32, 8, dflR}} {}
Max = ro {range | {7, 4, reset | {MAX}}} {}
Max = ro {range | {3, 0, reset | {MIN}}} {}

Example 1 The inherited form is an instance-form.

In REV template-form, consider the piece {RegW | ∅}.

REV.Im = ∅, then m = 0 and obviously T ε = ∅.

Example 2 The inherited form is a template form which needs a single parameter to perform its instantiation.
This parameter is moreover a final value (i.e. is not an element of Φ).

In pad instance form, consider {range | {32, . . .}}.

m = 2, T ε = {32, . . .}, then T ε1 is obviously a final instantiated value.

15

Example 3 The inherited form is a template form taking a single parameter which is an instance-form.

In pad instance form, consider {range | {. . . , dflR}}.

dflR ∈ Γφ is the 3th parameter of instantiation of the template-form range. It will be self reduced before be
instantiated within range.

Example 4 The inherited form is a template form taking a single template-form parameter. This template-
form parameter obviously needs to be itself instantiated with parameters. These parameters are either hard set
(examples 2 and 3) or come from the parameters given to the primary template-form.

In Max instance form, consider {range | . . . , reset | {MAX}}}.

reset ∈ Γ<φ> must be instantiated before be inherited by Max. The parameters it needs to perform its
instantiation are a subset of the given parameters coming from the refined form. Max refines REV which is a
template-form taking MAX as abstract parameter. MAX is needed within Max.

To instantiate range, consider the notation< range | {7, 4, reset | {MAX}} >, and hence, the 3th parameter
RESET is replaced with reset | {MAX}, reset ∈ Γ<φ>.

Besides, the abstract parameter of reset will be instantiated with MAX .

reset is instantiated with the single parameter it needs: MAX . The needed parameters are a subset of the
parameters given to the form to perform its instantiation. In this case, the needed parameter MAX is the only
one given to Max thru REV . MAX is a final instantiated value (second raw in the second table).

Example 5 The inherited form is an abstract parameter which will be dynamically inherited.

InREV instance form, taking two parametersχ1 and χ2 (in this order) to be instantiated, considerMin |MIN .

REV ∈ Γ<φ>, then before performing the instantiation of Min, the given parameter χ2 is first of all full
reducted without no significant endeavor since it must be a final value. But why is χ2 chosen?

Be j ∈ I∗2 , j = 2, be k ∈ I∗]T ε
i

= T ε]{MIN} = T ε1 , k = 1.

Consequently, ∃t2 ∈ (τi), t2 = MIN , ∃t′1 ∈ T ε1 , t1 = MIN as t2 = t′1.

Moreover, the jth item of T is χ2, since j = 2.

To conclude,Min is instantiated with !χ2, once χ2 becomes itself full instantiated.

Example 6 The inherited form is an abstract parameter which will be dynamically inherited (example 5).
Moreover, this abstract parameter is constrained with a form in Γ, to ensure, at run-time, that the given parameter
is compliant with the constrained-form.

Be range = {MAX, MIN, RESET} all {RESET}[o |MIN][w |MAX −MIN + 1]∅ modified into
range = {MAX, MIN, reset → RESET} all {RESET}[o |MIN][w |MAX −MIN + 1]∅.

The way of computation is the same as explained above in the 5th example in order to instantiate the template-
form range where the 3th abstract parameter needs to be instantiate first.

The RESET given parameter when an instantiation is performed needs to be itself an instantiation of the
template-form reset.

2.5.2 Demonstrations

Demonstration 1 Demonstrate that a template-form given as parameter to another template-form is already
full reduced.

(i) be (Γ, ν), ν ∈ Γφ a product

16

(ii) be < φx|T >+ = < {τ} α {ε | τ} . . . | {τ ′} >+, τ ′ ∈ Γ<φ> and τ ′ is not reduced

(iii) ∃s ∈ Γφ / ν
︸︷︷︸

∈Γφ

→ . . . → s
︸︷︷︸

∈Γφ

→ . . . → φx
︸︷︷︸

∈Γ<φ>

(iv) Then, ∃ (φxi
)i∈In

∈ Γn<φ> / φxn
| {φxn−1

| {. . . |{φx1
| {φx0

| {λ | ∅}}} . . .}}, with φxn
= φx and

s = α { φx0
| {λ | ∅ }} A (φi)i

(v) The σ-reduction is derivated in 6 separate cases. We assume that the assumption is wrong.

(i) λ = ∅ ⇒ φx0
∈ Γφ # φx0

∈ Γ<φ>

(ii) λ = κ ⇒ φx0
→∗ !φx0

(φx0
| {λ}) is not reduced

(iii) λ ∈ Γφ ⇒ φx0
→∗ !φx0

(φx0
| {λ}) is not reduced

(iv) λ ∈ Γ<φ> # λ | ∅ ⇒ λ ∈ Γφ ∨ λ is a final value

(v) λ = τ ∈ (τi)i # s ∈ Γφ

(vi) λ = (χ → τ) ∈ (τi)i # S ∈ Γφ

To conclude the falsified assumption is always wrong, ensuring that the assumption is true.

Notice that a σ-reduction can be written σ(T εi , T) →σ T ε
′

i once reduced.

σ(A, T): The attributes are fully instantiated here as follow:

A σ(A, T)
!A !A

[A|τ], τ ∈ (τi)i∈In
τ ′ ∈ T / ∃j ∈ I∗n, ∃k ∈ I∗#T , tk ∈ T εi = τj ∈ (τi)i ∧ t′i ∈ T = τ ′

A and τ ′ ∼ !A

(φi | σ(T φi , T))i∈Iu
: The semantics of inner forms and the semantics of inherited forms are quiet close for the τ -

reduction.

∀i ∈ Iu, φi | σ(T φi , T) →x α (εi | T
ε
i)i∈Im

!A (φi | T
φ
i)i∈Iu

| σ(T φi , T)

→τ α (εi | T
ε
i)i∈Im

!A (φi | T
φ
i)i∈Iu

| T

→r α (εi | T
ε′

i)i∈Im
!A (φi | T

φ′

i)i∈Iu
| T

17

2.6 Form reduction: φ ∈ Γφ →∗ !φ

Follow the reduction of a form φ into its instantiated normal form !φ.

< φ >+ →x < α (εi | T
ε
i)i∈Im

!A (φi | T
φ
i)i∈Iu

>+

→d < α (< εi | T
ε
i >

+)i∈Im
!A (< φi | T

φ
i >

+)i∈Iu
>+

→+
r < α (!εi)i∈Im

!A (!φi)i∈Iu
>+

→ε [α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

]
→r α′ ∅ !A′ (!φ′i)i∈Iu′

→r !φ

2.7 Template form reduction: < φ >∈ Γ<φ> →∗ !φ

Follow the reduction of a template form φ|T into its instantiated normal form !φ.

< φ | T >+ →x < (τi)i∈In
α (εi | T

ε
i)i∈Im

A (φi | T
φ
i)i∈Iu

| T >+

→τ < α (εi | σ(T εi , T))i∈Im
σ(A, T) (φi | σ(T φi , T))i∈Iu

>+

→σ < α (εi | T
ε′

i)i∈Im
!A (φi | T

φ′

i)i∈Iu
>+

→d < α (< εi | T
ε′

i >+)i∈Im
!A (< φi | T

φ′

i >+)i∈Iu
>+, this reduction has already been performed

→+
r < α (!εi)i∈Im

!A (!φi)i∈Iu
>+

→ε [α | (!εi)i∈Im
] ∅ [!A | (!εi)i∈Im

] [(!φi)i∈Iu
| (!εi)i∈Im

]
→r α′ ∅ !A′ (!φ′i)i∈Iu′

→r !φ

18

2.8 Example

Be the product PFoo = (Γ, F oo), F oo ∈ Γφ ⊆ Γ ⊂ Φ with

• Γφ = { Foo, RegWidth, RESERV ED }

• Γ<φ> = {MAJOR, MINOR, REV }

2.8.1 Declaration of the set Γ

1. Foo = all ∅ { Foo_Revision | ∅, F oo_Config | ∅ }

1. Foo_Revision = ro { REV | { [MAJOR | 0xB0], [MINOR | 0xB1] } !oFoo_Revision ∅

i. !oFoo_Revision = 0x0

ii. ΓRevision = ∅

2. Foo_Config = rw { RegWidth | ∅} !oConfig !δConfig ΓConfig

1. !oConfig = 22 + 4 − 2

2. !δConfig = “Configuration Register′′

3. Foo_Config_Revision = rw {REV | { [MAJOR | 0xA0], [MINOR | 0xA1] } ΓFoo_Config_Revision

i. Foo_Config_Revision_Major = ro ∅ !δFoo_Config_Revision_Major ∅

• !δFoo_Config_Revision_Major = “Major Number can be set by the ARM ′′

• ΓFoo_Config_Revision_Major = ∅

ii. ΓFoo_Config_Revision = { Foo_Config_Revision_Major | ∅ }

4. ΓCongig = { Foo_Config_Revision | ∅ }

3. ΓFoo = { Foo_Revision | ∅, F oo_Config |∅ }

2. MAJOR = { RESET } all ∅ !δMAJOR !ωMAJOR [ρ | RESET] ∅

1. !δMAJOR = “Major Revision Number′′

2. !ωMAJOR = 4 bit

3. ΓMAJOR = ∅

3. MINOR = { RESET } all ∅ !δMINOR !ωMINOR [ρ | RESET] ∅

1. !δMINOR = “Minor Revision Number′′

2. !ωMINOR = 4 bit

3. ΓMINOR = ∅

4. REV = { T, U } all { RegWidth | ∅} !δREV ΓREV

1. !δREV = “Revision Number′′

2. REV _reserved = all { RESERV ED | ∅ } ∅

3. REV _Major = all { T | ∅ } !oREV _Major ∅

i. !oREV _Major = 4 bit

ii. ΓREV _Major = ∅

4. REV _Minor = all { U | ∅ } !oREV _Minor ∅

i. !oREV _Minor = 0x0

ii. ΓREV _Minor = ∅

5. ΓREV = { REV _reserved | ∅, REV _Major | { T }, REV _Minor | { U } }

19

5. RegWidth = all ∅ !ωRegWidth ∅

1. !ωRegWidth = 32 bit

2. ΓRegWidth = ∅

6. RESERV ED = all ∅ !δRESERV ED !ρRESERV ED ∅

1. !δRESERV ED = “Reserved′′

2. !ρRESERV ED = 0x0

3. ΓRESERV ED = ∅

20

We therefore want to reduce Foo into a reducted normal form !Foo: < Foo >+ →∗ !Foo, applying the rules
mentioned in the sections above.

2.8.2 < MAJOR | κ >+ →∗

!MAJORκ, MAJOR ∈ Γ<φ>, κ ∈ { 0xB0, 0xA0 }

!MAJORκ
all ∅ !δMAJOR !ωMAJOR !ρMAJOR ∅, !ρMAJOR = κ

< all ∅ σ(!δMAJOR, κ) σ(!ωMAJOR, κ) σ([ρ | RESET], κ) ∅ >+

< { RESET } all ∅ !δMAJOR !ωMAJOR [ρ | RESET] ∅ | κ >+

< MAJOR | κ >+

2.8.3 < MINOR | κ >+ →∗

!MINORκ, MINOR ∈ Γ<φ>, κ ∈ { 0xB1, 0xA1 }

!MINORκ
{ all ∅ !δMINOR !ωMINOR !ρMINOR ∅, !ρMINOR = κ

< { all ∅ σ(!δMINOR, κ) σ(!ωMINOR, κ) σ([ρ | RESET], κ) ∅ >+

< { RESET } all ∅ !δMINOR !ωMINOR [ρ | RESET] ∅ | κ >+

< MINOR | κ >+

2.8.4 < RegWidth >+ →∗

!RegWidth

!RegWidth
< all ∅ !ωRegWidth ∅ >+

< RegWidth >+

2.8.5 < RESERV ED >+ →∗

!RESERV ED

!RESERV ED
< all ∅ !δRESERV ED !ρRESERV ED ∅ >+

< RESERV ED >+

2.8.6 < REV | { φ1, φ2 } >+ →∗

!REVinst, REV ∈ Γ<φ>

• φ1 ∈ {MAJOR | κ }, MAJOR ∈ Γ<φ>, κ ∈ { 0xB0, 0xB1 }

• φ2 ∈ {MINOR |κ′ }, MINOR ∈ Γ<φ>, κ
′ ∈ { 0xA0, 0xA1 }

• !φ1 ∈ { !MAJOR0xB0, !MAJOR0xB1 }

• !φ2 ∈ { !MINOR0xA0, !MINOR0xA1 }

The table 1 depicts the reduction of the template formREV into a fully instantiated reducted normal form !REVinst
with inst an identifier highlighting the instance.

2.8.7 < Foo >+ →∗

!Foo

The table 2 highlights the reduction of Foo into a reducted normal form !Foo.

21

!REV _Majorinst, inst ∈ {0xB0, 0xB1}
all ∅ !oREV _Major !δMAJOR !ωMAJOR !ρMAJOR ∅
[all | { !φ1 }] ∅ [!oREV _Major | { !φ1 }] [∅ | { !φ1 }]

< all { !φ1 } !oREV _Major ∅ >+, !φ1 = all ∅ !δMAJOR !ωMAJOR !ρMAJOR ∅
< all { σ(T | ∅, !φ1) } σ(!oREV _Major , !φ1) σ(∅, !φ1) >+

< all { T | ∅ } !oREV _Major ∅ | !φ1 >+

< REV _Major | !φ1 >+

!REV _Minorinst, inst ∈ {0xA0, 0xA1}
all ∅ !oREV _Minor !δMINOR !ωMINOR !ρMINOR ∅
[all | { !φ2 }] ∅ [!oREV _Minor | { !φ2 }] [∅ | { !φ2 }]

< all { !φ2 } !oREV _Minor ∅ >+, !φ2 = all ∅ !δMINOR !ωMINOR !ρMINOR ∅
< all { σ(T | ∅, !φ2) } σ(!oREV _Minor, !φ2) σ(∅, !φ2) >+

< all { T | ∅ } !oREV _Minor ∅ | !φ2 >+

< REV _Minor | !φ2 >+

!REVκ1, κ2

all ∅ !δREV !ωRegWidth Γ!REV , Γ!REV = { !REV _reserved, !REV _Majorκ1
, !REV _Minorκ2

}
< [all | !RegWidth] ∅ [!δREV | !RegWidth] [{ !REV _reserved, !REV _Majorκ1

, !REV _Minorκ2
} | !RegWidth] >+

< all { !RegWidth} !δREV { !REV _reserved, !REV _Majorκ1
, !REV _Minorκ2

} >+

< all { < RegWidth | ∅ >+} !δREV { < REV _reserved | ∅ >+, < REV _Major | !φ1 >+, < REV _Minor | !φ2 >+} >+

< all { RegWidth | ∅} !δREV { REV _reserved | ∅, REV _Major | !φ1, REV _Minor | !φ2} >+

< all { σ(RegWidth|∅, {φ1, φ2}) } σ(!δREV , {φ1, φ2}) { σ(REV _reserved|∅, {φ1, φ2}) , σ(REV _Major|{T}, {φ1, φ2}) , σ(REV _Minor|{U}, {φ1, φ2}) } >
+

< {T, U}all{RegWidth|∅}!δREV {REV _reserved|∅, REV _Major|{T}, REV _Minor|{U}}|{φ1, φ2} >
+

< REV | { φ1, φ2 } >+

Tab
le

1.
<

R
E
V

|
{
φ

1 ,
φ

2
}
>

+
→

∗
!R
E
V
in
s
t ,
R
E
V

∈
Γ
<
φ
>

22

!Foo_Revision
ro ∅ !oFoo_Revision !δREV !ωRegWidth { !REV _reserved, !REV _Major0xB0, !REV _Minor0xB1 }
< [ro | {!REV0xB0, 0xB1}] ∅ [!oFoo_Revision | {!REV0xB0, 0xB1}] [∅ | {!REV0xB0, 0xB1}] >+

< ro { !REV0xB0, 0xB1 } !oFoo_Revision ∅ >+

< ro { < REV | { [MAJOR | 0xB0], [MINOR | 0xB1] >+ } !oFoo_Revision < ∅ >+ >+

< ro { REV | { [MAJOR | 0xB0], [MINOR | 0xB1] } !oFoo_Revision ∅ >+

< Foo_Revision >+

!Foo_Config_Revision_Major
< ro ∅ !δFoo_Config_Revision_Major ∅ >+

< Foo_Config_Revision_Major >+

!Foo_Config_Revision
rw ∅ !δREV !ωRegWidth { !REV _reserved, !Foo_Config_Revision_Major0xA0, !REV _Minor0xA1 }

!Foo_Config_Revision_Major0xA0 = wo ∅ !δFoo_Config_Revision_Major !oREV _Major !ωMAJOR !ρMAJOR ∅, !ρMAJOR = 0xA0
rw ∅ !δREV !ωRegWidth { !REV _reserved, µ[!Foo_Config_Revision_Major|!REV _Major0xA0], !REV _Minor0xA1 }

[rw | { !REV0xA0, 0xA1 }] ∅ [∅ | { !REV0xA0, 0xA1 }] [{ !Foo_Config_Revision_Major } | { !REV0xA0, 0xA1 }]
< rw { !REV0xA0, 0xA1 } { !Foo_Config_Revision_Major } >+

< rw { < REV | { [MAJOR | 0xA0], [MINOR | 0xA1] >+ } { < Foo_Config_Revision_Major | ∅ >+ } >+

< rw { REV | { [MAJOR | 0xA0], [MINOR | 0xA1] } { Foo_Config_Revision_Major | ∅ } >+

< Foo_Config_Revision >+

!Foo_Config
rw ∅ !oConfig !δConfig ωRegWidth { !Foo_Config_Revision}

[rw | {!RegWidth}] ∅ [!oConfig !δConfig | {!RegWidth}] [{!Foo_Config_Revision} | {!RegWidth}]
< rw {!RegWidth} !oConfig !δConfig {!Foo_Config_Revision} >+

< rw {< RegWidth | ∅ >+} !oConfig !δConfig { < Foo_Config_Revision | ∅ >+ } >+

< rw {RegWidth | ∅} !oConfig !δConfig { Foo_Config_Revision | ∅ } >+

< Foo_Config >+

!Foo
all ∅ { !Foo_Revision, !Foo_Config }

all ∅ { < Foo_Revision >+, < Foo_Config >+ }
< all ∅ { Foo_Revision | ∅, F oo_Config | ∅ } >+

< Foo >+

Tab
le

2.
<

F
oo

>
+
→

∗
!F
oo

23

3 Language Definition

The language proposal RD1 aims to fit the architecture and the MoC described in the previous chapter.

3.1 EBNF Grammar

3.1.1 Expressions

expr ::= expr (’+’ | ’-’ | ’*’ | ’/’ | ’%’) expr | ’(’ expr ’)’ | VALUE
IDT ::= [a-zA-Z]([a-zA-Z0-9] | ’_’)*
VALUE ::= BIN_VALUE | HEX_VALUE | DEC_VALUE
BIN_VALUE ::= ’0’ [by] (0 | 1)+
HEX_VALUE ::= ’0’ [x] [0-9a-fA-F]+
DEC_VALUE ::= [0-9]+

texpr ::= texpr (’+’ | ’-’ | ’*’ | ’/’ | ’%’) texpr | ’(texpr ’)’ | VALUE | IDT

The operator and their precedence are defined as follow.

operator type precedence comment
’+’ binary left plus
’+’ hexadecimal left plus
’+’ decimal left plus
’-’ binary left minus
’-’ hexadecimal left minus
’-’ decimal left minus
’*’ binary left not defined
’*’ hexadecimal left not defined
’*’ decimal left multiplication without overload
’/’ binary left not defined
’/’ hexadecimal left not defined
’/’ decimal left integer division

’%’ binary left not defined
’%’ hexadecimal left not defined
’%’ decimal left modulus

3.1.2 Form

form ::= access ID extends (“is” body)? “end” ID ’;’
access ::= “all” | “ro” | “wo” | “rw”
extends ::= “extends” extends_form (’,’ extends_form)* | ε
extends_form ::= ID | ID ’<’ IDV (’,’ IDV)* ’>’
IDV ::= ID | UNIT | VALUE | STRING
ID ::= [a-zA-Z]([a-zA-Z0-9] | ’_’)*
UNIT ::= “bit” | “byte”
body ::= (offset | width | description | reset | inner_form)+
offset ::= “offset” (“init” | expr UNIT | expr) ’;’
width ::= “width” expr UNIT ’;’
description ::= “description” STRING ’;’
reset ::= “reset” expr ’;’
STRING ::= ’“’ < printable character >* ’“’

1RD as Register Description

24

3.1.3 Template Form

tform ::= “template” template access ID extends (“is” body)? “end” ID ’;’
template ::= ’<’ IDT (’,’ IDT)* ’>’
access ::= “all” | “ro” | “wo” | “rw”
extends ::= “extends” extends_form (’,’ extends_form)* | ε
extends_form ::= ID | IDT | ID ’<’ IDV (’,’ IDV)* ’>’
IDV ::= ID | UNIT | VALUE | STRING | IDT
UNIT ::= “bit” | “byte” | IDT
body ::= (offset | width | description | reset | inner_form)+
offset ::= “offset” (“init” | texpr UNIT | texpr) ’;’
width ::= “width” texpr UNIT ’;’
description ::= “description” (STRING | IDT)’;’
reset ::= “reset” texpr ’;’
STRING ::= ’“’ < printable character >* ’“’

3.1.4 Inner Form

inner_form ::= access [ID | “reserved] extends (“is” body)? “end” [ID | “reserved”] ’;’
access ::= “all” | “ro” | “wo” | “rw”
extends ::= “extends” extends_form (’,’ extends_form)* | ε
extends_form ::= ID | IDT | ID ’<’ IDV (’,’ IDV)* ’>’
IDV ::= ID | UNIT | VALUE | STRING | IDT
UNIT ::= “bit” | “byte” | IDT
body ::= (offset | width | description | reset | inner_form)+ | “mandatory”
offset ::= “offset” (“init” | texpr UNIT | texpr) ’;’
width ::= “width” texpr UNIT ’;’
description ::= “description” (STRING | IDT)’;’
reset ::= “reset” texpr ’;’
STRING ::= ’“’ < printable character >* ’“’

3.1.5 Product

A product P is composed of a set of forms Γφ and a set of template forms Γ<φ> to define the context Γ and a root
node ν ∈ Γφ.

root ::= “root” form

3.2 Modular Compiling

Compiling a form φ ∈ Γφ to reduce it into !φ costs time to perform the checks. Besides, a compiling costs memory
to fully instantiate φ into !φ. Unfortunately a root node can be derivated in too much levels in depth and width to
manage a fully instantiation, costing by side effect too much time and/or too much memory leading to system issues
and of course cause system abortion befor getting !φ.

To manage wide node instantiation, the level of depth and width can be reduced, compiling nodes, which can be,
as separate entities in order to perform modular compiling.

Be P = (Γ, φ) so that we want to compute φ into !φ. Unfortunately, this product has scalable issues due to the size
of its derivated tree.

We can however observe that φ →n φn →m !φ where φn is the nth-derivate from φ. Moreover, ψ ∈ Γ needs to
be inherited within φn. Thus, we can campile ψ as a separate root node leading to !ψ ∈ Φ a fully instantiated form.
And then, substitute in Γφ, ψ by !ψ.

25

To conclude, to compute φ, we’ve just given a way to cut the computation taking ψ as the root of a sub-tree needed
to get !φ fully instantiated. We’ve therefore gained time and memory in the computation of φ, using a precompiled
form !ψ instead of ψ which is already fully instantiated.

Cutting such sub-trees hierarchically may lead to a computation of φ which may cost neither time nor memory,
whereas with the first approach φ has not been previously computed due to the explosion in time and/or memory of its
huge tree.

26

4 Example of an IRQ management module

An IRQ management module is composed of IRQ lines which will be enabled or disabled by hardware components.
These lines can be read to get if the concerned IRQ has been arisen and reset according to 4 commonly used protocols2.

For our purpuse, the truth table below depicts the behavior of a read / write 1 to clear IRQ line.
In this example, we assume that no bypass protocol is defined i.e. an IRQ arisen by a component and a read/write

command cannot occur at the meantime. The figure below highlights a basic IRQ line management.

Monitor

IRQIP

logics

wire

Read / Write

Value

Write0x1

Write0x0

Read0x1

Read0x0

wire IRQ command IRQ
0 0 idle 0
0 1 idle 0
1 0 idle 1
1 1 idle 1
0 0 read 0 (Read0x0)
0 0 write 1 (Write0x1) 0
0 0 write 0)Write0x0) 0
0 1 read 1 (Read0x1)
0 1 write 1 (Write0x1) 0
0 1 write 0 (Write0x0) 1

4.1 Generic read / write 1 to clear form declaration

This form is basically fully instantiated yet:

rw IRQ_rw1toClr is
description ‘‘IRQ line R/W 1 to clear’’;
reset 0;
width 1 bit;
ro Read0x0 is

description ‘‘read the value 0x0’’;
reset 0x0;

end Read0x0;
ro Read0x1 is

description ‘‘read the value 0x1’’;
reset 0x1;

end Read0x0;
wo Write0x0 is

description ‘‘writing the value 0x0 has no effet’’;
end Read0x0;
wo Write0x1 is

description ‘‘write the value 0x1 to clear the register’’;
reset 0x0;

end Read0x0;
end IRQ_rw1toClr;

2read / write 1 to clear, read / write 0 to clear, read / write 1 to set, read / write 0 to set

27

However, the reset value of this 1-bit register is hard coded with 0. In some cases, this value should be set to 1. The
first solution would be to manually duplicate this capture to hard code the reet value to 1. The second solution, highly
recommended, is to give a parameter to this form. This fully instantiated form in Γφ is abstracted and goeas in Γ<φ>
in order to be instantiated with the wanted reset value.

template < RESET >
rw IRQ_rw1toClr is

description ‘‘IRQ line R/W 1 to clear’’;
reset RESET;
width 1 bit;
ro Read0x0 is

description ‘‘read the value 0x0’’;
reset 0x0;

end Read0x0;
ro Read0x1 is

description ‘‘read the value 0x1’’;
reset 0x1;

end Read0x0;
wo Write0x0 is

description ‘‘writing the value 0x0 has no effet’’;
end Read0x0;
wo Write0x1 is

description ‘‘write the value 0x1 to clear the register’’;
reset 0x0;

end Read0x0;
end IRQ_rw1toClr;

4.2 Declaration of an IRQ management module

We are designing a FIFO which has 12 IRQ lines. We will declare and define the module which aim to manage
these lines.

The current specification defines 5 IRQs as depicted by the figure below.

We can notice that 7 bits are reserved for future usage if needed in the beach J5, 11K. These bits are hard-wired
connected to return 0’s on read and discard any writing values. We will therefore define a template form which declares
such beach of reserved bits.

template < N, OFFSET >
rw Reserved is

description ‘‘Reserved. Reads return 0’s’’;
reset 0x0;
width N bit;
offset OFFSET bit;

end Reserved;

main all FIFO_IRQs is
description ‘‘FIFO IRQ lines management’’;
width 12 bit;
all reserved extends Reserved< 12 - 5, 5 > end reserved;
all FIFO_UF extends IRQ_rw1toClr<0> is

description ‘‘FIFO UnderFlow IRQ’’;
offset init;

end FIFO_UF;
all FIFO_EPTY extends IRQ_rw1toClr<1> is

description ‘‘FIFO Empty IRQ’’;
offset 1 bit;

end FIFO_EPTY;
all FIFO_THR extends IRQ_rw1toClr<0> is

description ‘‘The threshold in the FIFO has been reached’’;
offset 2 bit;

28

end FIFO_THR;
all FIFO_FULL extends IRQ_rw1toClr<0> is

description ‘‘The FIFO is Full’’;
offset 3 bit;

end FIFO_FULL;
all FIFO_OF extends IRQ_rw1toClr<0> is

description ‘‘FIFO OverFlow IRQ’’;
offset 4 bit;

end FIFO_OF;
end FIFO_IRQs;

4.3 Fully instantiated IRQ management component for the FIFO

Hence, our system PFIFO_IRQs = (Γ, F IFO_IRQs), Γφ = {FIFO_IRQs }, Γ<φ> = {Reserved, IRQ_rw1toClr }
can be computed to get reducted into !FIFO_IRQs as depicted by the following tree. Our compacted 50 lines de-
scription, is computed into a RDO outputted flatten file, 115 lines wide, fully RD compliant. Consequently, as soon as
FIFO_IRQs ∈ Γφ is reduced into a normal form !FIFO_IRQs, we can use it as a core component avoiding costly
reductions.

all FIFO_IRQs is
description "FIFO IRQ lines management";
width 12 bit;
rw reserved is

description "Reserved. Reads return 0’s";
offset 5 bit;
reset 0x0;
width 7 bit;

end reserved;
rw FIFO_UF is

description "FIFO UnderFlow IRQ";
offset 0x0;
reset 0;
width 1 bit;
ro Read0x0 is

description "read the value 0x0";
reset 0x0;

end Read0x0;
ro Read0x1 is

description "read the value 0x1";
reset 0x1;

29

end Read0x1;
wo Write0x0 is

description "writing the value 0x0 has no effet";
end Write0x0;
wo Write0x1 is

description "write the value 0x1 to clear the register";
reset 0x0;

end Write0x1;
end FIFO_UF;
rw FIFO_EPTY is

description "FIFO Empty IRQ";
offset 1 bit;
reset 1;
width 1 bit;
ro Read0x0 is

description "read the value 0x0";
reset 0x0;

end Read0x0;
ro Read0x1 is

description "read the value 0x1";
reset 0x1;

end Read0x1;
wo Write0x0 is

description "writing the value 0x0 has no effet";
end Write0x0;
wo Write0x1 is

description "write the value 0x1 to clear the register";
reset 0x0;

end Write0x1;
end FIFO_EPTY;
rw FIFO_THR is

description "The threshold in the FIFO has been reached";
offset 2 bit;
reset 0;
width 1 bit;
ro Read0x0 is

description "read the value 0x0";
reset 0x0;

end Read0x0;
ro Read0x1 is

description "read the value 0x1";
reset 0x1;

end Read0x1;
wo Write0x0 is

description "writing the value 0x0 has no effet";
end Write0x0;
wo Write0x1 is

description "write the value 0x1 to clear the register";
reset 0x0;

end Write0x1;
end FIFO_THR;
rw FIFO_FULL is

description "The FIFO is Full";
offset 3 bit;
reset 0;
width 1 bit;
ro Read0x0 is

description "read the value 0x0";
reset 0x0;

end Read0x0;
ro Read0x1 is

description "read the value 0x1";
reset 0x1;

end Read0x1;
wo Write0x0 is

description "writing the value 0x0 has no effet";
end Write0x0;
wo Write0x1 is

description "write the value 0x1 to clear the register";
reset 0x0;

end Write0x1;
end FIFO_FULL;
rw FIFO_OF is

description "FIFO OverFlow IRQ";
offset 4 bit;
reset 0;
width 1 bit;

30

ro Read0x0 is
description "read the value 0x0";
reset 0x0;

end Read0x0;
ro Read0x1 is

description "read the value 0x1";
reset 0x1;

end Read0x1;
wo Write0x0 is

description "writing the value 0x0 has no effet";
end Write0x0;
wo Write0x1 is

description "write the value 0x1 to clear the register";
reset 0x0;

end Write0x1;
end FIFO_OF;

end FIFO_IRQs;

4.4 Component managing the IRQs of a module

This section aims at describe how to easily use the IRQ management component defined above as a part of this
component registers description using a FIFO, but does not focus on a fully description.

Be the following piece of registers specification of the Camera Core module. All registers are 32-bit wide.

Register Offset Description
CC_REVISION 0x00 Revision Register

CC_IRQSTATUS 0x18 Interrupt Status Register
CC_IRQENABLE 0x1C Interrupt Enable Register
CC_FIFODATA 0x4C FIFO Data Register

CC_TEST 0x50 Test Register

The piece of specification below of the CC_IRQSTATUS register depicts the ranges affected for the three main
sub-modules of the Camera Core IP.

include ‘‘common.rd’’ /*** the file includes the template form Reserved ***/
import ‘‘FIFO_IRQs’’ /*** the fully instantiated form FIFO_IRQs is imported ***/

/*** The form should have been declared in the file common.rd ***/
all XXXXxxxxRegisterWidth is

width 32 bit;
end XXXXxxxxRegisterWidth;

template < RESET, N, OFFSET >
ro ReservedDoNotWrite extends Reserved<N, OFFSET > is

description ‘‘Reserved. Do Not Write’’;
reset RESET;

end ReservedDoNotWrite;

all IRQSTATUS extends XXXXxxxxRegisterWidth is
description ‘‘Interrupt Status Register’’;
all FIFO extends FIFO_IRQs is

offset init;
end FIFO;
all reserved_1 extends Reserved<16 - 12, 12> end reserved;
all PARALLEL ... end PARALLEL;
all reserved_2 extends Reserved<26 - 20, 20> end reserved;
all SERIAL ... end SERIAL;
all reserved_3 extends ReservedDoNotWrite<0b11, 2, 30> end reserved;

31

end IRQSTATUS;

main all CameraCore is
description ‘‘Camera Core Registers’’;
ro CC_REVISION ... end CC_REVISION;
rw CC_IRQSTATUS extends IRQSTATUS is

offset 0x18;
end CC_IRQSTATUS;
rw CC_IRQENABLE ... end CC_IRQENABLE;
rw CC_FIFODATA ... end CC_FIFODATA;
ro CC_TEST ... end CC_TEST;

end CameraCore;

32

