Register Description — DRAFT 0.5

Bertrand B. Blanc
bertrand.blanc@xx.com

2004 ©

Contents
1 Definitions 4
1.1 Productand Sets e e 4
1.2 FOrmMS . . o 4
1.3 Template FOrms e e e 6
131 Inheritance StatUS L 7
1.4 Miscellaneous L e 8
141 SetS . . o e 8
1.4.2 Reductions & EXpansions e e e e 8
143 Substitutions 8
15 Example . . . o e e 9
2 Model of Computation 11
21 Rule l: z-eXPanSion —, . o v v v e e e 11
211 Expansionofaformeo ey 11
2.1.2 Expansionofatemplateform< ¢ >c DTy .. o o0 o0 o0 oo 11
2.2 Rule 2: d-expansion (distributivity) —q 11
2.2.1 Distributivity onanexpandedform¢ e T'y, oL 11
2.2.2 Distributivity on an expanded template form < ¢ > T'cgs o Lo Lo 12
2.3 Rule 3: r-reduction —, e e 12
24 Ruled:inheritance L e 12
241 €e-eXPanSION —¢ e 12
242 pereduction — . .. L 14
2.4.3 Access refinementininnerforms L 14
244 rreduction ... oL 14
25 Ruleb:instantiation. e 14
251 Examples 15
25.2 Demonstrations e 16
2.6 Formreduction: o € Ty —*lop L 18
2.7 Template formreduction: < ¢ > Ty ="lo L 18
2.8 Example 19
2.8.1 DeclarationofthesetT' e 19
282 < MAJOR|k >t —=*IMAJOR,, MAJOR €<y, k€ { 0zBO, 0zA0 } 21
283 < MINOR|k >t —=*IMINOR,, MINOR € Ty~, k€ {02B1, 0zA1} 21
284 < RegWidth >T —*RegWidth i i 21
285 < RESERVED >% —=*IRESERVED 21
286 < REV|{¢1, ¢p2} > >*REVjpe, REV €Ty oo v v v 21

287 < Foo >1T =*1Fo00 e 21

3 Language Definition 24
3.1 EBNFGrammar. 24
311 EXPressions v v v e e e 24

312 FOrm . 24

313 Template Form 25

314 InnerFOrm e 25

315 ProduCt 25

3.2 Modular Compiling e e 25

4 Example of an IRQ management module 27
4.1 Genericread / write 1 to clear form declaration L 27
4.2 Declaration of an IRQ managementmodule 28
4.3 Fully instantiated IRQ management componentforthe FIFO 29
4.4 Component managingthe IRQsofamodule 31

1 Définitions
1.1 Product and Sets

A product B is a couple composed of a context I' and a root node v: B = (T',v). T is the environment of 3,
also called the context of 3. I' is composed of a set of forms I', and a set of template forms I' 4~ which can be

instantiated through the items of I'y: I' = Ty U4 € @, [y Ny = @. The set @ is the set of all the possible
forms i.e. encapsulates all possible register description. The root v is obviously an item of I': v € I'y.

1.2 Forms
Aform ¢ € ', or an inner form ¢ € T'¥ tuning ¢ € ® is represented as:

¢ = al(e|Ty)ier, 'A (¢ T;b)ielu
—_——

re

where

a €A the access type. The set A is currently composed of 4 basic access types
1. ro read-only
2. wo write-only
3. rw read-write
4. all matches any access
(ei | Tf)icr,, an ordered set of extentions inherited by ¢ indexed by 4
m €N is the number of extensions. If m = 0, then the set
(€i | Tf)ier,, is reduced into &
Vi e [1,m], e, €T ¢ iseither a form
or an instantiation of a template form

TS, 1€ 17, is the ordered set of values given to the template form e € ' 4>
to instantiate it. If 77 = @, thene; € 'y
1A represents the attributes of the form. The exclamation mark means that

these attributes, if they are defined, are set with a final value.
Follow the current attributes 0, p, o, w masked by the generic A
1. 16 the description of ¢
2. lp the reset value of ¢
3. lo theoffsetof ¢,lo e N
4, lw the width of ¢, lw € N*

(¢i | T;b)ielu an ordered set of inner forms refining the registers description of ¢.

u €N is the number of inner forms. If © = 0, then the set
seT (¢i | T?)ie1, is reduced to @
¢ Vie [Lul, gi €19 ¢ ¢ 1,¢; €1°.
TS, ielr T = @
(¢i | Tf)ie]u an ordered set of inner forms refining the registers description of .
u€eN is the number of inner forms. If © = 0, then the set

(¢i | T?)ier, is reduced to @
Vi€ [Lu], ¢; €T? ¢ ¢ 1,6, € T°.
T?, i€ I is the ordered set of values given to ¢; to perform its

% pall . .
inner instantiation. Ti¢ =@ if MpeTaps /0 =7 ¢

2

pery

Property 1: contiguity coherency

Bey = a3 A(di)ier:, v € Pwitho € Aandw € A.

Then, once the width attribute is set within a form, it must be equal to the sum of the widths recursively computed

on the inner-forms tuning this form.
ueEN®

w = Z ¢;.w
i=1
However, we sometimes need to let blank bit-fields to capture for example remote registers. These special

bit-fields cannot indeed be tuned with inner forms.

Property 2: range coherency

Two inner-forms refining a form cannot overlap.
Bey = a @ A(pi)ier:, v € ®.

We need to introduce here a bounded range [\, Ac] in which ¢ evolves i.e. ¢ set bits, not necessary contiguous
within the range [A\y, Ac]. Such arange is noted [¢). \p, 1.)¢].

Then, Vi € IF, Vj € I\{i}, [$i-Xo, Gi-Ae] O [0 00, 650 = @

Property 3: overlap coherency

The above property 2 avoids any overlap between two forms. However, the form overlap is sometimes needed.
Two behaviors have got exhibited.

Property 3.1: dual forms

Two forms ¢; € ® and ¢ € ®\{¢;} are dual if and only if

(i) the both inner-forms are not refined [=1 =g

(ii) the both inner-forms have the same defined ¢1.0 = ¢9.0
offset

(iii) the both inner-forms have the same defined P1.w = Po.w
width

(iv) the both inner-forms refine the same form 3y € ® / ¢y € 'Y A ¢ € TY
Property 3.2: modal forms

We need to introduce here a modal attribute 3 € M in order to tag a form ¢ € & as follow:

¢ = Bad!A(di)ier,
Two forms ¢; € ® and ¢ € ®\{¢;} are modal if and only if

(i modes are identical ¢1.0 # ¢2.0

(if) offsets are the same $1.0 = ¢2.0

(iii) widths are the same Pr.w = ¢o.w

(iv) the both modal inner-forms refinethe same 3y € ® / ¢y € TY A ¢ € TV
form

1.3 Template Forms

A template form < ¢ > ' 4~ is represented as:
<é>= (Ticr, a (& | T)icr,, A (61 | T)ier,
———
re

where

(T2)ier, the ordered set of final abstract items (basic 7;) or constrained abstract item (r; matchesy — 7, x € '
means that when instantiate, this item must be compliant with)
needed in the body of < ¢ > to instantiate it. n # 0 since < ¢ >€ I' 4.

a €A the access type. The set A is currently composed of 4 basic access types
1. ro read-only
2. wo write-only
3. rw read-write
4. all matches any access

(ei | TS)ier,, an ordered set of extentions inherited by < ¢ > indexed by i

méeN is the number of extensions. If m = 0, then the set
(€i | Tf)ie1,, is reduced into &

Vi € [1,m], e; € T ¢ is either a form or an instantiation of a template form or
an abstract item 7 € (7;);¢r,, aimed to be instantiated
with an item of T.

Ts, i€ 1}, is the ordered values or abstract values 7 € (7;);c1, given to the
template form ¢; € I 4> to instantiate it.
If Tf = @, theneithere; € Ty, 0r €; € (7;)ic1, -
If ¢; € (7:)ier, and 7; x — constrained, then ¢; is x — typed

A represents the attributes of the template form. These
attributes, if they are defined, are set with either a final value or an abstract
value T € (7;)e1,, - Follow the current attributes 4, p, o, w masked by the generic A
1. [d|7] the abstract description of < ¢ >, 7 € (74)ic1,

2. [p|r] theabstract reset value of < ¢ >, 7 € (7;)ser,
3. [olr] theoffsetof < ¢ >,7 € (7)icr,

4. [w|r] thewidthof < ¢ >,7 € (7:)ier,

5 1 the instantiated description of < ¢ >

6. Ip the instantiated reset value of < ¢ >

7. lo the instantiated offsetof < ¢ >,0 € N

8. lw the instantiated width of < ¢ >, w € N*

(¢i | T?)icr, an ordered set of inner forms refines the registers description of < ¢ >.

u €N is the number of inner forms. If © = 0, then the set
(¢i | T)icr, is reduced to @

Vi € [1,u], ¢; €T? ¢; € ['?, where I'? represents
the set of inner refinements.

Tf, iel? is the oredered set composed of either final values or abstract value 7 € (7;);e1,,
given to ¢, to perform the instantiation
of inner components recursively. Tf =@ if (7)ier, donotimpact I'?

1.3.1 Inheritance Status

Some inner forms ¢; € I'? are ought to mandatory be defined when inherited. To ensure that the form will be
rgfined in the caller, the form is declared in the callee as an abstract inner form. Such a form is noted in the callee as
¢; € re.

1.4 Miscellaneous
141 Sets

1. C=AUB = (VzeC,xc AvoeB) A Vo€ A, Yy € B, {z, } € C?)
2.C = AnB = (VozeC,zeANzeB) AN VzeA/xze B, zeC)
3ANB =@ =VeeA VyeB, ¢ BAy¢ A

4. (vi)ier,
(l) i =0 = (xi)ieln =
(i) i # 0 = (wi)ier, = (Ti)ierr
(iii) is an ordered set (if defined) indexed by i € [1, n]: { z1, x2,..., zn }

142 Reductions& Expansions

1. Theform « is reducted into b in a single step, applying a rule. Seven rules are defined beyond in the section devoted
to the Model of Computation.

a —-b=3te{z,r,d e pu 1,0}/a —+ b

2. The form a is reducted into b in at least one step.

a -t b=3ced/a—c—"b

3. The form a is either reducted into b in at least one step, or is already reducted.
a —"b=3dne¢c N, H(Ci)ieN/

MHn=0=a~%5d
i)n#£A0=(a—=>Tb=a—>c — ... > cp, —b)

4. The form a is reducted into its fully reducted normal form in either at least one step, or is already reducted.
a —*la= Poecd®/la - ¢) A (la +¢)
5. The couple of forms a and b are equivalent each other modulus basic expansion and reduction rules.

a~b=a—,,0b

6. Corollary of the item above.
a 4b=3te{d e p 7,0t/a >4 b

1.4.3 Substitutions

The substitution operator is basically noticed [X | Y] where « is a set to get substituted and Y a set of items of
substitution.

1. the semantics of this operator depends on the type of the sets represented by X and Y

2. a singleton can either be noticed {«} or x if a set is expected according to the type-check. Discarding braces
prevents verbosity

3. if sets size is greater than 1, a binary associative law must be defined

1.5 Example

Follow five examples to highlight the definitions above:

1 "B = (Fa¢1)7 (bl EP(j)

The product B is composed of a set I" of forms (I';) and a set of template forms (I'< 4~.). I' is the union of 'y,
and I'4~. The node ¢, is the root and is obviously an item of I'.

2. Ty = {1}, Tcp> = {d2}, [' = Ty Ulcys = {¢1, ¢2}, [sNTcy> = @
The set of forms I'y is a singleton only composed of ¢;. The set of template forms I .4~ is a singleton only
composed of ¢». I is therefore the set composed of these both items ¢; and ¢-.

3. o = {T}OZQ@[[)lT]@, as € A

¢o is a template form and thus matches the representation
(ri)ier, a (& | Tf)ier, A (i | T)ier,

(Ti)ieln = {T},thenn = l,andﬁ =T
«

= «o i Obviously a valid access type since as € A

(ei | Tf)icr,, = 9, thenm = 0

A = [p|7], then the reset value p is abstracted and will be instantiated as soon as the template form < ¢ >
will be instantiated with obviously one parameter ~. This template form has no description 4, no offset o
and no width w

o (¢ | T)icr, = @, meansu = 0andI'?> = o,

4, ¢ = ay {¢g2|r} 161 {p11}, a1 € A, ¢11 € TP, kis areset value

a (e | T)ier,, A (6 | T)icr,
e a = «q isobviously a valid access type since a; € A
o (6| Tf)ier,, = {¢2|c}, thenm = 1,e1 = ¢ € Tand Tf = &k which is a reset value. Tf # o
ensuresthate; = ¢ € 'y C T
Notice that if 7 = o, then the context would have been violated.

— First demonstration

(i) by assumption, ¢2 ¢ Ty

(ii) p2 ¢ Ty SinCE T} = @

(iii)then @2 ¢ T'y, UT <4~

(iv)then ¢g ¢ T#Ve € (€;)icr,,, €eET
— Second demonstration

(i) by assumption, ¢2 € I'cp>

(ii) 2 ¢ Tcps Since Iy = @

(iii)then a contradiction is reached #
Moreover, ¢, is a template form which will be instantiated with one item. Indeed, ¢ has a single abstract
description field, which is coherent typed with .

e A =16 ensures that ¢, has only a final description field, with neither any offset o, nor reset value p, nor
width w. The sensitive reader would have right noticed the a reset value would have been indeed inherited
from ¢2. However, The Model of Computation is not focused within this section.

o (] Tf’)igu = {¢11}, meansthatu = 1, ¢ = ¢1;1 (take care, this equation means that ¢;; matches
¢1 which is here the first item of the inner forms set (¢; | Tf’)igu = T'%1 of the form ¢; € I'y) and
Tf’ = @. Theset I'?* of inner forms is declared as IT'?* = {11} to tune the description of the form ¢;.
be = @ ensures that this inner form do not need to instantiate deeper abstract items coming from ¢ .

5 ¢11 = a1 @ 1011 lo11 D, a11 € A
¢11 € T'?1 is a valid inner form, matching the same semantics depicted above for ¢,

10

2 Model of Computation

Foraproductp = (I', v), v € T'y, this Model of Computation aims to reduce v into a reducted normal form !v
fully instantiated, following a set of reduction and expansion rules defined below. This MoC applied on v is noted:

<v>T=*ly,vel,
<v|T >t —=* v, v € Ty, T an ordered set of parameters needed to instantiate v

2.1 Rule1: z-expansion —,

The expansion is a syntactical rewriting wich expands an abstract item into an expression in order to perform further
operation.

211 Expansionofaform¢ €T’y

¢ = al(e|T)ier, A(Si|T)ier,, €Ty
<¢>" =, <ale|Tier, A(di | T)ier, >*
also noticed:

<a(e| T ier, A(¢i | T)ier, >+
<>t

2.1.2 Expansion of atemplateform < ¢ >€ I'c 4>

<¢>= (t)ier, a (& | Tf)ier, A(¢i | T)ier,, & € T<os
<O |T>% =, < (m)ier, a (& | T ier, A6 | T)ier, | T >F
also noticed:

< (r)ier, @ (€ | T)ier, A (¢i | T)ier, | T >+

<¢|T>T

2.2 Rule 2: d-expansion (distributivity) —4

The distributivity is a syntactical rewriting wich will inject an operation inside an expression in order to perform
this operation recursively.

221 Distributivity on an expanded form ¢ € I'y

<ale | Tfier, A(¢i | T)ier, >t —a<a (< e |Tf >Mier, A< ¢i | T >F)ier, >
also noticed:

<a(<e|TE>Vier, A< ¢i | TP >)ier, >
<o (€ | Tf)ier, A(di] T'qb)ielu >t

(2

11

2.2.2 Didgtributivity on an expanded templateform < ¢ >€ I'c 4>

This rule is unforeseen and illegal. Indeed, distributing the operator < . > inside the template form is unrelevant
since some T’F or T;" can be abstracted. This operation could only be perform after getting all abstract item instantiated
with T'. See the instantiation rule below. The template form will be computed into an instantiated form and we will
therefore be able to apply the same distributivity rule as the one defined above for ¢ € 'y

2.3 Rule 3: r-reduction —,

The reduction is a syntactical rewriting wich reduces a computed expression into an abstract item in order to meet
a known syntactical expression.

!GZ‘

(i) inheritance reduction < €;|Tf > —, l¢; also noticed ———c——
< €|Tf >

Notice that here is matched one and only one rule of the couple of basic rules < v >* — ly, v e Ty If Tf = o,
or <v|T > =y, veTeys.

(ii) inner form reduction < ¢;| T >* —, ¢,
Notice that here is matched the basic rule < v|T >+ — lv, v € T?.

(iii) the inheritance and instantiation rules will be deeper explain in their respective subsection.

type expansion reduction
inheritance | e-expansion | u-reduction
instantiation | T-expansion | o-reduction

2.4 Rule 4: inheritance
241 e-expansion —.

This e-expansion is only managed under the following assumptions:
(i) the inherited forms are reduced into a reducted normal form l¢;, ¢; € T
(ii) the attributes are fully instantiated ! A
(iii) the inner forms are reduced into a reducted normal form !¢;, ¢; € I'*

(iv) ¢ is either a form, or an inner-form, or an instantiated form.

pe{d /(¢ €Ty) vV (<YT>T= ¢, heTeys) V (¢ €T?)}

< a(e)ier, A (\0i)ier, >T —c [a] (€)ier,] @ ['A| ()ier,] [(\0i)ier, | (Yi)icr,]

[o | (Yei)ier,.] D ['A | (ei)ier] [(@i)ier, | (€)ier,,]
< o (ei)ier, A (19:)icr, >t

where

[a] (Ye;)icr,,]: the reduced access type o € A is associatively computed according to the primal access type « of ¢
and the inherited ones as: [a | ('€;)icr,,] = [---[[a | le1]]lea] - . . |lem]

12

g

['A | (!ei)iEIm]:

a |lga,iell || o = |a]le.ql
all all all
all ro ro
all wo wo
all rw rw
ro all ro
ro ro ro
ro WO L
ro rw il
wo all wo
wo ro il
wo wo wo
WO rw L
rw all rw
rw ro il
rw WO 1L
rw rw rw

depicted below. ['A | (Y€;)icr,,.] = [-.-[['Al'e1] |e2] - .]

[("pi)ier, | (‘ei)ier,,)

depicted below.

Inherited forms did obviously disapper since they have been merged within ¢.

The attributes are associatively computed, merging the attributes of ¢ with the ones inherited as

1A | 1A, i eIr | le;lA, je Il \{i} 1A” | comment

T {T, 1} {T, L} 'A | overload

1 T T L inheritance conflict
1 T L le; 1A | inheritance

1 1 L L undefined

The set of inner forms will be grown up with the inherited inner forms coming from (¢;); as

lp; € T? | leglgp e T | lejlgp € T I’ comment
iel} iel je I \{i}

1 T 1 le; 1o inheritance le;.!¢ € T'?
€ i € € undefined
L T T 1L conflict
T T L wlldille; 9] inheritance merge (u-reduction)
T 1 1 1 basic definition
T T T plloi|'e; o, le;.lg] | inheritance merge (u-reduction)

Mandatory Inner Forms ¢» € I'?: The mandatory inner forms are expected to be defined when inherited, following

the rule:
lp € T? | lelp € T' || status | comment
T T T declared in the callee and defined in the caller
T il T no mandatory inner form declared in the callee
1 T 1 declared in the callee but nor defined in the caller
1 il T neither declared nor defined

13

242 p-reduction —

w[!da|les] and ul!dq|'ds, o] are the merging operator defined as follow, computing a merged inner instance form

l¢,, € T'?, either overloaded, or refined.

(i lopa = [l@q.a|lldp.a, @0 access type definition and refinement
w['ba|'dp, o] (ii) o lA = [lgg. Al 1A, ol A] attributes definition

(iii) ¢, I% = [l¢g.['%|1g,. % ¢, %] inner forms definition

(iv) lop.a = [ldg.allgyp.0f access type definition and refinement
w['ba|!ds] (v) o lA = [lgg.lA|l¢y. Al attributes definition

(i) ¢, I% = [l¢,.T%|l¢,.I'?] inner forms definition

2.4.3 Accessrefinement ininner forms

The access mode of the inner forms v € I'? is also refined in order to be aligned with the access type of ¢. The

following table define the access refinement.

24.4 r-reduction

d.a | v || [¢.alp.al
all all all
all ro ro
all | wo wo
all rw rw
ro all ro
ro ro ro
ro | wo 1
ro rw ro
wo | all wo
W0 ro 1
wo | wo W0
wWo | rw W0
rw | all rw
rw ro ro
rw | wo wo
w | rw rw

Consequently, we can thereafter perform a syntactical »-reduction:

la | (Yei)ier,] @ 1A] (€i)ier,] [(10i)icr, | (ei)icr,] —r o @1A" (16))icr,,

of TVA (!¢2)i61u’

la| (ei)ier,] @ 1A (Yei)ier,] [(9i)icr,

(!ei)ielm]

2.5 Rule 5: instantiation

The 7-expansion rule aims to inject values within a template form ¢ € I' < 4~ in order to instantiate it.

14

< ()ier, @ (€5 | T)ier,, A(0i | T)ier, | T >4 —2< a (e | o(T5,T))ier,, 0(A,T) (¢ | o(T7, T))ier, >+

<a (e | o(T8,T))ier, o(AT) (¢ | o(T T))ier, >*
< (1)ier, (e | TS)ier, A (¢i | T)ier, | T >F

where

(&i | (o(Tf,T))ier,,: Theinherited forms instantiation setting up the abstract values within the templates forms.

example Te, i€l o(Tf,0'(T))
1 g m =0 10
2 a final instantiated value
3 T'eTly <T' >t
4 T' € Teys <T"NT" Co'(T)>", #T" = #T'.(1;);
5 T E (Ti)ie[" 16 / Hj S I;, dk € I#T;, Ht% S Tf = T; € (Ti)i
AT = (t;/),;T, th =10
AN —* 1T
6 (1/) — T)E(Ti)ieln '9/3]61:” Hk'EI#Tie, Ht;CET;E = TjE(Ti)i
/\T = (t;’)];ﬂ” t;l = 9
NG~
demonstration T o'(T)
%] %]
« a final instantiated value &
(ti)i (o' (ti)):
T' ey T" already reduced
1 T €T y> T’ already reduced. This case is hence illegal.

251 Examples

This section practicaly highlights the mathematical model above. The following set I' composed of template-
forms, instance-forms and inner-forms will be used in each examples.

RegW = all {} (w=32) {}

range = {MAX, M N, RESET} all {RESET} [o|MN [wW MAX-M N+1] {}

dfIR = all {} (r=0x0) {}

reset = {RESET} all {} [r=RESET] {}

REV. = {MAX, MN ro {RegW| {}} { pad | {}, Max | {MAX}, Mn | {MN }
pad =ro {range | {32, 8, dfIR}} {}

Max =ro {range | {7, 4, reset | {MAX}}} {}

Max =ro {range | {3, 0, reset | {MN}} {}

Example 1 The inherited form is an instance-form.
In REV template-form, consider the piece { RegW | &}.
REV.I,, = @,thenm = 0andobviously T¢ = &.

Example 2 The inherited form is a template form which needs a single parameter to perform its instantiation.
This parameter is moreover a final value (i.e. is not an element of ®).

In pad instance form, consider {range | {32, ...}}.
m = 2,T¢ = {32, ...}, then Ty is obviously a final instantiated value.

15

Example 3 The inherited form is a template form taking a single parameter which is an instance-form.
In pad instance form, consider {range | {..., dfIR}}.

dflR € T is the 3t" parameter of instantiation of the template-form range. 1t will be self reduced before be
instantiated within range.

Example 4 The inherited form is a template form taking a single template-form parameter. This template-
form parameter obviously needs to be itself instantiated with parameters. These parameters are either hard set
(examples 2 and 3) or come from the parameters given to the primary template-form.

In M ax instance form, consider {range | ..., reset | {MAX}}}.

reset € I'cys must be instantiated before be inherited by Max. The parameters it needs to perform its
instantiation are a subset of the given parameters coming from the refined form. M ax refines REV which is a
template-form taking M AX as abstract parameter. M AX is needed within Mazx.

To instantiate range, consider the notation < range | {7, 4, reset | {M AX}} >, and hence, the 3'" parameter
RESET is replaced with reset | {MAX}, reset € T'<ys.

Besides, the abstract parameter of reset will be instantiated with M AX .

reset is instantiated with the single parameter it needs: M AX. The needed parameters are a subset of the
parameters given to the form to perform its instantiation. In this case, the needed parameter M AX is the only
one givento Max thru REV. M AX is a final instantiated value (second raw in the second table).

Example 5 The inherited form is an abstract parameter which will be dynamically inherited.
In REV instance form, taking two parameters x; and x» (in this order) to be instantiated, consider Min | MIN.

REV € T'<4>, then before performing the instantiation of Min, the given parameter x is first of all full
reducted without no significant endeavor since it must be a final value. But why is x4 chosen?

Bejely, j =2bek € Iipe = Tinny = Ti k = L.

Consequently, 3t5 € (73), t2 = MIN,3t) € Tf, t1 = MINasty = t.
Moreover, the j*" item of T'is o, since j = 2.

To conclude, Min is instantiated with !'v2, once o becomes itself full instantiated.

Example 6 The inherited form is an abstract parameter which will be dynamically inherited (example 5).
Moreover, this abstract parameter is constrained with a form in I, to ensure, at run-time, that the given parameter
is compliant with the constrained-form.

Be range = {MAX, MIN, RESET} all {RESET}[o| MIN][w | MAX — MIN + 1)@ modified into
range = {MAX, MIN, reset — RESET} all {RESET}o| MIN]|w| MAX — MIN +1]@.

The way of computation is the same as explained above in the 5 example in order to instantiate the template-
form range where the 3" abstract parameter needs to be instantiate first.

The RESET given parameter when an instantiation is performed needs to be itself an instantiation of the
template-form reset.

2.5.2 Demonstrations

Demonstration 1 Demonstrate that a template-form given as parameter to another template-form is already
full reduced.

(i) be (T, v), v € T'y aproduct

16

(i) be< ¢,|T >t =<{r}a{e|r}...|{7'} >T, 7 € 'y~ and 7’ is not reduced

iii) dseT vV o — ... — 8§ — ... —
() ¢/\ , N , ¢r
el'y el'y €lcys

(iv) Then, 3 (¢z,)ier, € T2 / buy [{Gan s [{+-Hbar [{¢ug [{A[S}}}.. 3}, With 6, = ¢ and
s = a{ gz [{AD}}A(Pi)i

(v) The o-reduction is derivated in 6 separate cases. We assume that the assumption is wrong.

(i) A = K = ¢z =" Pu, # (Pu, | {A}) is N0t reduced
(iii)y X € Ty = ¢zy —" 10z, # (92, | {A}) is NOt reduced
(iv) M€ Teps# A9 = X € Ty vV Misafinal value
(V) A=7TE€ (Tl)l#s € P¢

W) A=(x —71) € (m)i#S €Ty
To conclude the falsified assumption is always wrong, ensuring that the assumption is true.
Notice that a o-reduction can be written o(7,7) —, T once reduced.

o(A,T): The attributes are fully instantiated here as follow:

Al o(AT)
1A 1A
[Alr], 7 € (Ti)ier, | T €T /3jel;, k€ Ly, th €Tf = 1€ ()i N €T = 7
Aand 7’ ~1A

(¢i | a(T;", T))icr,: The semantics of inner forms and the semantics of inherited forms are quiet close for the -
reduction.

Vi€l ¢i|o(T?,T) o ale | T)ier, 'A (6 | T ier, | o(T7,T)
A (¢ |

T« (6i | Tf)ielm ! (T'(b)ielu |T

2

e o6 | T)i, "A (6 | T)ier, | T

i

L

17

2.6 Form reduction: ¢ €Ty —* ¢

Follow the reduction of a form ¢ into its instantiated normal form !¢.

<o>t —n < ale| Tier, A (¢ | T)ier, >
—q < a(<e|Tf >Nier, 1A (< ¢ | Tf >T)ier, >
-t < a(leiern, 'A(1¢i)ier, >T
[| (Yei)ier,,] D ['A] (Yei)ier,] [(1¢i)ier, | (Yei)icr,]
O/ (%] 'AI (!¢;)i61u’
o

o

Iy

2.7 Template form reduction: < ¢ >€ Ty —* 19

Follow the reduction of a template form ¢|T" into its instantiated normal form !¢.

<o|T>t —, < (Tien, a (€| Tier,, A (¢ | T)ier, | T >+
= < a(G|o(T,T))ier, o(AT) (¢ | o(T T))ier, >+
= < ale | T Vier, A6 | T Vier, >
—d < « (< €; | Tf/ >+)i61m 1A (< o3 | Tf/ >+)ielu >+, this reduction has already been performed
-t < a(l&)iern, 'A(1)ier, >
—e ol (e)ier,] @Al (e)ier,] [(¢i)ier, | (€)ier,,]
—r o DA (1¢))icr,,
—r o

18

2.8 Example

Be the product Br,, = (I', Foo), Foo € T'y CT C @ with
e I'y = { Foo, RegWidth, RESERVED }
e I' y> = {MAJOR, MINOR, REV }

2.8.1 Declaration of theset T’

1. Foo = all @ { Foo_Revision | &, Foo_Config|@ }

1. Foo_Revision = ro{ REV |{[MAJOR|0xzB0], [MINOR | 02B1] } '0F0 Revision &
i. 10ro0_Revision = 020
ii. FRevision -
2. Foo_Config = rw { RegWidth | @} oconfig 0contig [Config
1. !OConfig =22+4-2
2. WV0contig = “Configuration Register”
3. Foo_Config_Revision = rw{ REV |{[MAJOR|0xA0], [MINOR |0xAl] } ['FeoConfig Revision
i. Foo_Config_Revision_Major = 1o @ 0roo Config Revision_Major &

® 10ro0 Config Revision Major = “Major Number can be set by the ARM"
° I‘FOO_Config_Re'uision_Major = g

ii. TFooConfig Revision — [Foo Config_Revision_Magjor | @ }
4, TC°n9%9 = [Foo_Config_Revision | }
3. T'Fe° = { Foo_Revision | @, Foo_Config |2 }

2. MAJOR = {RESET } all D Vomaj0r \Wrrasor [p | RESET] %)

1. ¥6pa50r = “Major Revision Number”

2. lwyprajor = 4bit
3 [MAJOR _ 4

3. MINOR = { RESET } all 3 \opriNoR \WMINOR [p | RESET] %]

1. YWyrinor = “Minor Revision Number”

2. !wM[NOR = 4 bit
3. I\MINOR = O

4. REV = {T, U} all { RegWidth | @} 16ppy TREV
1. Yrev = “Revision Number”
2. REV_reserved = all { RESERVED |2 } &
3. REV_Major = all { T | %) } !OREV_Major %]

i. !OREV_Major = 4 bit
i FREV_Major — ¥

4, REV_Minor = all { U | 6] } !OREV_Minor %]

I. VoREV Minor = 020
i FREV_Minor — ¥

5. TEEV = [REV _reserved | @, REV_Magor | { T}, REV_Minor |{U }}

19

5. RegWidth = all @ \WRregwidth D

1. !WRegWidth = 32 bit
2. I“RegWidth -

6. RESERVED = all @ !6RESERVED !pRESERVED %)

1. YreservED = “Reserved”

2. 'preservED = 020
3. [RESERVED _

20

We therefore want to reduce Foo into a reducted normal form !Foo: < Foo >* —* |Foo, applying the rules
mentioned in the sections above.

282 < MAJOR|k >t —*IMAJOR., MAJOR € T <4, r € { 0280, 0zA0 }

IMAJOR,
all 3oy as0R 'wnmasor pvasor 9, pyasor = K
< all@o(dpmasor, k) o(lwpasor, k) o([p| RESET], k) @ >+
< {RESET } all I 0pra50R \WrmATOR [p | RESET] %] ‘ Kk >T
< MAJOR |k >7T

283 < MINOR|k > —*IMINOR,, MINOR € T<y>, k € { 0zB1, 0zA1}

IMINOR,
{all @6y 1NoR 'WwrmiNoR PMINOR D, \pmiNOR = K
< {all %] U(!5M1N0R7 /i) U(!WMINORa K) U([p | RESET], K) o >t
< {RESET } all I 'omrNor \wmINOR [p | RESET] %) | k >T
< MINOR |k >

284 < RegWidth > —* |RegWidth

!RegWidth
< all @ !wRegWidth o >t
< RegWidth >

285 < RESERVED >t -*\RESERVED

'RESERVED

< all @ 0rEsErvED \PRESERVED D >T
< RESERVED >t

286 < REV |{61, 62} >" =" \REVipa, REV € Ty

e ¢1 € { MAJOR |k}, MAJOR €T 4>, k € { 02B0, 0zB1 }
o ¢o € { MINOR |r'}, MINOR € T <>, ' € { 0zA0, 0zAL }
o ¢y € {IMAJOR,50, 'MAJORgz51 }
o ¢y € {IMINORgya0, 'MINORgza1 }

The table 1 depicts the reduction of the template form REV into a fully instantiated reducted normal form | REV,,s;
with inst an identifier highlighting the instance.

287 < Foo >T —*1Foo

The table 2 highlights the reduction of Foo into a reducted normal form ! Foo.

21

<>13 ATY FUNTYG — o< { % 10} | Agy > T 9|qelL

'\REV _Majoripst, inst € {0xB0, 0xB1}
all @ orEv Major '0MAJOR \WMAJOR \PMATOR @
[all | {1¢1 }] @ [lorEv_Major [{101 }] [@] {!¢1 }]
< all {1¢1 } orEV Major @ >T, 1¢1 = all @ 10nmas0r 'wrasor pvmasor @
< all { O’(T ‘ g, 'gbl) } U(!OREV_]V[ajOT7 '(bl) O’(@7 '¢1) >
< all { T | %) } !OREV_]\/jajOT %) | '(,251 >+
< REV_Magjor|¢1 >T

'REV _Minor;ps:, inst € {0z A0, 0xAl}
all @ oREV Minor 'OMINOR \WMINOR 'PMINOR D
[all [{!¢2 }] @ [lorEv_minor | {192 } [@ | {142 }]
< all {162 } 'orEV Minor @ >T, 1o = all @ VOpnor 'WaiiNoR pMINOR @
< all { O’(T | g, '(,252) } U(!OREV_ZVIinor, 'gf)g) O'(@, 'd)g) >+t
< all { T ‘ %] } !OREV_Minor %] | '(252 >t
< REV_Minor | \¢s >T

44

'REV, ks
all D V6 ppv \Wregwiath TPV, T'EEV. = [1REV _reserved, \REV_Majory,, |REV_Minor,, }
< lall | \"RegWidth] @ ['\0rev | |RegWidth] [{ \REV _reserved, \REV_Majory,, \REV_Minor,,} | \RegWidth] >+
< all { 'RegWidth} 0gpy { {REV _reserved, \REV_Major,,, \REV_Minor,,} >%
< all{ < RegWidth| @ >"}10rpy { < REV _reserved | >*, < REV_Magjor|!¢1 >, < REV_Minor |!¢ >T} >T
< all { RegWidth | @} 0rpy { REV _reserved | @, REV_Magjor | \¢1, REV_Minor | 1¢pa} >T

< all { o(RegWidth|@, {$1, ¢2}) } 0(0rpv. {¢1, d2}) { o(REV reserved|@, {$1, do}) , o(REV_Major[{T}, {¢1, ¢2}) , o(REV_Minor|{U}, {¢1.¢2}) } >*

<AT,U}all{ RegWidth|@Hoprv{ REV _reserved|@, REV_Major|{T}, REV_Minor|{U}}{¢1, p2} >T

< REV |{¢1, 2} >T

00| e 1< 004 > "g3|(eL

€¢

|Foo_Revision
70 @ 10F00_Revision OREV WRegwiath { \REV _reserved, \REV_Majorozpo, 'REV_Minorozp1 }
< [ro | {!REVozBo, 0281} | @ ['0F00 Revision | {{REVozBo, 0zp1}) | @ | {!REVozB0, 0aB1} | >T
< TO{ !RE%mBO, 0xB1 } !OFOO_Revision 1] >+
< ro{< REV |[{[MAJOR|0zBO|, [MINOR |0zB1] >" }0poo Revision < @ >T >T
< ro{REV [{[MAJOR|0zB0], [MINOR | 0xB1] } '0Foo_Revision @ >
< Foo_Revision >T

1Foo_Config_Revision_Major

< 109D !6F00_C'onfig_Revision_Major %) >+
< Foo_Config_Revision_Major >T

!Foo_Config Revision

rw @ 0rEV \Wregwidth { 'REV _reserved, !Foo_Config_Revision_Majorogzao, 'REV_Minorogai }
!Foo_Config_Revision_MajorOon = woJ !6Foo_Config_Revision_]Wajor !OREV_Major !WMAJOR !PMAJOR g, !PMAJOR = 0zA0

rw @ V0rEv \Wregwiath { {REV _reserved, p[!Foo_Config_Revision_Major||REV_Majorozaol, \REV_Minorozai }

[rw | { \REVoza0, 0x41 }) D [D | { \REVoz40, 0x41 }] [{ ! Foo_Config_Revision_Major } | { 'TREVyz a0, 0xa1 }]

< rw { |{REVyz a0, 0z41 } { Foo_Config_Revision_Major } >+

< rw{< REV |{[|MAJOR|0zA0], [MINOR |0zAl| >* } { < Foo_Config_Revision_Major |2 >T } >T

< rw{REV|[{[MAJOR|0zA0], [MINOR|0xAl1]}{ Foo_Config_Revision_Major | @ } >*

< Foo_Config_Revision >

1Foo_Config
rw D 0config 10Config WRegwidth { |Foo_Config_Revision}
[rw | {!RegWidth}] @ [oconfig 10config | {!RegWidth}] [{!Foo_Config_Revision} | {{RegWidth}]
< rw {{RegWidth} 1oconfig 10con fig {!Foo_Config_Revision} >T
< rw{< RegWidth| @ >7} oconfig 0config { < Foo_Config_Revision|@ >T } >¥
< rw {RegWidth | @} locon fig 0config { Foo_Config_Revision |2 } >T
< Foo Config >T

1Foo
all @ { 'Foo_Revision, !Foo_Config }
all @ { < Foo_Revision >7, < Foo_Config >}
< all @ { Foo_Revision | @, Foo_Config| @ } >*
< Foo >7*

3 Language Defi nition
The language proposal RD! aims to fit the architecture and the MoC described in the previous chapter.

3.1 EBNF Grammar

3.1.1 Expressions

expr = oexpr(C+T -7 F || %) expr| *(C expr”)’ | VALUE

IDT = [a-zA-Z]([a-zA-Z0-9] | ’_")*

VALUE := BIN_VALUE | HEX_VALUE | DEC_VALUE

BIN_VALUE == ’0’[by] (0] 1)+

HEX_VALUE := ’0’ [x][0-9a-fA-F]+

DEC_VALUE := [0-9]+

texpr m= o texpr (|- * | /| %) texpr | *(texpr *)’ | VALUE | IDT

The operator and their precedence are defined as follow.

operator type precedence | comment
T+’ binary left plus
T+’ hexadecimal left plus
T+’ decimal left plus
binary left minus
hexadecimal left minus
decimal left minus
el binary left not defined
T* hexadecimal left not defined
T* decimal left multiplication without overload
' binary left not defined
' hexadecimal left not defined
” decimal left integer division
"%’ binary left not defined
"%’ hexadecimal left not defined
"%’ decimal left modulus
312 Form
form := access ID extends (“is” body)? “end” ID *;’
access = “all” | “ro” | “wo” | “rw”
extends = “extends” extends_form (’,” extends_form)*| e
extends_form = ID|ID’< IDV (', IDV)*’>’
IDV := ID| UNIT | VALUE | STRING
ID = [a-zA-Z]([a-zA-Z0-9] | *_")*
UNIT = “bit” | “byte”
body := (offset | width | description | reset | inner_form)+
offset = “offset” (“init” | expr UNIT | expr) ’;’
width = “width” expr UNIT 7}’
description = “description” STRING ’;’
reset = “reset” expr’;’
STRING ;= '’ < printable character >* "’

1RD as Register Description

24

3.1.3 Template Form

tform = “template” template access ID extends (“is” body)? “end” ID ’;’
template = < IDT () IDT)* >’

access = “all” | “ro” | “wo” | “rw”

extends = “extends” extends_form (’,” extends_form)*| e
extends_form = ID|IDT|ID’<’ IDV (’; IDV)* ’>’

IDV := ID|UNIT | VALUE | STRING | IDT

UNIT = “bit” | “byte” | IDT

body := (offset | width | description | reset | inner_form)+
offset = “offset” (“init” | texpr UNIT | texpr) ’;’

width = “width” texpr UNIT ’;’

description = “description” (STRING | IDT)’;’

reset = “reset” texpr’;’

STRING = '’ < printable character >* "’

3.14 Inner Form

inner_form := access [ID | “reserved] extends (“is” body)? “end” [ID | “reserved”] ’;’
access = “all” | “ro” | “wo” | “rw”

extends = “extends” extends_form (’,” extends_form)* | e

extends_form = ID|IDT|ID’<’ IDV (’, IDV)* >’

IDV := ID|UNIT | VALUE | STRING | IDT

UNIT = “bit” | “byte” | IDT

body := (offset | width | description | reset | inner_form)+ | “mandatory”
offset = “offset” (“init” | texpr UNIT | texpr) °;’

width = “width” texpr UNIT ’;’

description = “description” (STRING | IDT)’}

reset = “reset” texpr’;’

STRING ;= '’ < printable character >* **’

3.1.5 Product

A product B is composed of a set of forms I, and a set of template forms I' 4~ to define the context I" and a root
node v € T'y.

root = “root” form

3.2 Modular Compiling

Compiling a form ¢ € I, to reduce it into !¢ costs time to perform the checks. Besides, a compiling costs memory
to fully instantiate ¢ into !¢. Unfortunately a root node can be derivated in too much levels in depth and width to
manage a fully instantiation, costing by side effect too much time and/or too much memory leading to system issues
and of course cause system abortion befor getting !¢.

To manage wide node instantiation, the level of depth and width can be reduced, compiling nodes, which can be,
as separate entities in order to perform modular compiling.

Be 3 = (T, ¢) so that we want to compute ¢ into !¢. Unfortunately, this product has scalable issues due to the size
of its derivated tree.

We can however observe that ¢ —" ¢" —™ l¢ where ¢ is the n'"-derivate from ¢. Moreover,) € T' needs to
be inherited within ¢™. Thus, we can campile ¢ as a separate root node leading to !y € ® a fully instantiated form.
And then, substitute in Iy, ¢ by !4.

25

To conclude, to compute ¢, we’ve just given a way to cut the computation taking « as the root of a sub-tree needed
to get !¢ fully instantiated. We’ve therefore gained time and memory in the computation of ¢, using a precompiled
form !4 instead of ¢) which is already fully instantiated.

Cutting such sub-trees hierarchically may lead to a computation of ¢ which may cost neither time nor memory,
whereas with the first approach ¢ has not been previously computed due to the explosion in time and/or memory of its
huge tree.

26

4 Example of an IRQ management module

An IRQ management module is composed of IRQ lines which will be enabled or disabled by hardware components.
These lines can be read to get if the concerned IRQ has been arisen and reset according to 4 commonly used protocols?.

For our purpuse, the truth table below depicts the behavior of a read / write 1 to clear IRQ line.

In this example, we assume that no bypass protocol is defined i.e. an IRQ arisen by a component and a read/write
command cannot occur at the meantime. The figure below highlights a basic IRQ line management.

Read / Write
~Read0x0
logics
wire Vaue | . ReadOx1
|« WriteOx0
e WriteOx1
B
R
wire | IRQ command IRQ
0 0 idle 0
0 1 idle 0
1 0 idle 1
1 1 idle 1
0 0 read 0 (Read0x0)
0 0 write 1 (WriteOx1) 0
0 0 write 0)WriteOx0) 0
0 1 read 1 (Read0x1)
0 1 write 1 (WriteOx1) 0
0 1 write 0 (WriteOx0) 1

4.1 Generic read / write 1 to clear form declaration

This form is basically fully instantiated yet:

rwlRQ rwlitoCr is
description ‘““IRQline RRW1 to clear’’;
reset O;
width 1 bit;
ro Read0Ox0 is
description ‘‘read the value 0x0'';
reset 0xO0;
end ReadO0xO0;
ro ReadOx1 is
description ‘‘read the value Ox1'';
reset Ox1;
end ReadOx0;
wo WiteOx0 is
description ‘‘witing the value 0x0 has no effet’’;
end ReadOx0;
wo WiteOxl is
description ‘‘wite the value Ox1 to clear the register’’;
reset 0xO0;
end ReadO0xO0;
end | RQ rwitoCr;

2read / write 1 to clear, read / write O to clear, read / write 1 to set, read / write O to set

27

However, the reset value of this 1-bit register is hard coded with 0. In some cases, this value should be setto 1. The
first solution would be to manually duplicate this capture to hard code the reet value to 1. The second solution, highly
recommended, is to give a parameter to this form. This fully instantiated form in I, is abstracted and goeas in I' < 4~
in order to be instantiated with the wanted reset value.

tenpl ate < RESET >
rwlRQ rwltoCr is
description ‘‘IRQline RRW1 to clear’’;
reset RESET;
width 1 bit;
ro ReadOx0 is
description ‘‘read the value 0x0'’;
reset 0xO0;
end ReadOx0;
ro ReadOx1 is
description ‘‘read the value 0x1'’;
reset O0x1;
end ReadOxO0;
wo WiteOx0 is
description ‘‘“witing the value 0x0 has no effet’’;
end ReadOxO;
wo WiteOx1 is
description ‘‘wite the value Ox1 to clear the register’’;
reset 0xO0;
end ReadOx0;
end |RQ rwlitoCr;

4.2 Declaration of an IRQ management module
We are designing a FIFO which has 12 IRQ lines. We will declare and define the module which aim to manage

these lines.
The current specification defines 5 IRQs as depicted by the figure below.

11)10/9[8|7[6][5

B

FIFO UF |o©

resenved

FIFO FULL |

FIFO_OF
FIFO_THR |
FIFO_EPTY | =

We can notice that 7 bits are reserved for future usage if needed in the beach [5, 11]. These bits are hard-wired
connected to return 0°s on read and discard any writing values. We will therefore define a template form which declares
such beach of reserved bits.

tenplate < N, OFFSET >
rw Reserved is
description ‘‘Reserved. Reads return 0's’’;
reset 0xO0;
width N bit;
of fset OFFSET bit;
end Reserved;

main all FIFOIR® is
description ‘*FIFO I RQ | i nes managenent’’;
width 12 bit;
all reserved extends Reserved< 12 - 5, 5 > end reserved;
all FIFO UF extends | RQ rwltod r<0> is
description ‘*FI FO UnderFlow | RQ ' ;
offset init;
end FI FO_UF;
all FIFO_EPTY extends | RQ rwltodr<1> is
description ‘‘FIFO Empty IRQ "’ ;
offset 1 bit;
end FI FO_EPTY;
all FIFO THR extends IRQ rwitodr<0> is
description ‘‘The threshold in the FIFO has been reached ’;
offset 2 bit;

28

end FI FO THR;

all FIFO FULL extends | RQ rwltoC r<0> is
description ‘*The FIFOis Full’’;
of fset 3 bit;

end FI FO FULL;

all FIFO OF extends I RQ rwltoC r<0> is
description '‘FIFO OverFlow I RQ " ;
of fset 4 bit;

end FI FO_OF;

end FlI FO_| RQs;

4.3 Fully instantiated IRQ management component for the FIFO

Hence, our system Prrro rros = (I, FIFO_IRQs), 'y = { FIFO_IRQs }, I'cy> = { Reserved, IRQ_rwltoClr }
can be computed to get reducted into | F'1 FO_I RQs as depicted by the following tree. Our compacted 50 lines de-
scription, is computed into a RDO outputted flatten file, 115 lines wide, fully RD compliant. Consequently, as soon as
FIFO_IRQ@s € T, is reduced into a normal form |1 FO_I R()s, we can use it as a core component avoiding costly
reductions.

FIFO_IRQs
description
idth
reserved FIFO_OF FIFD_FULL FIFO_THR FIFO_EPTY FIFO_UF
description description description description description description
resat reset resat reset reset rasat
width width width width width wiidth
offset offget offset offget offget offset
Readdx<0 ReadOd<1 Write0x1 WriteO«0 Read0x0 ReadOxl WriteDx! \Write0x0
description | description [description description description | description |deseription descriptian
reset reset reset reset reset reset
Read0x0 ReadO«1 Write0x1 WriteOx0 Read0x0 ReadO«1 Write0x1 WriteOx0
description | description [description description description | description [description description
reset reset reset reset reset reset
Read0x0 Readdx1 WriteOx1 WriteOx0
description | description [description description
reset reset reset

all FIFOIR® is
description "FIFO I RQ |i nes managenent";
width 12 bit;
rwreserved is
description "Reserved. Reads return 0’s";
offset 5 bit;
reset 0xO0;
width 7 bit;
end reserved;
rwFIFOUF is
description "FI FO Under Fl ow | RQ';
of f set 0xO0;
reset O;
width 1 bit;
ro ReadOx0 is
description "read the val ue 0x0";
reset 0xO;
end ReadOxO0;
ro ReadOx1 is
description "read the value 0x1";
reset Ox1;

29

end ReadOx1;
wo WiteOx0 is
description
end Wit eOx0;
wo WiteOxl is
description
reset 0xO0;
end WiteOx1;

end FI FO_UF;
rw FI FO_EPTY is

"writing the value 0x0 has no effet"”;

"write the value 0x1 to clear the register”;

description "FIFO Enpty | RQ';

offset 1 bit;
reset 1
width 1 bit;
ro ReadOx0 is
description
reset 0xO0;
end ReadOxO0;
ro ReadOx1 is
description
reset Ox1;
end ReadOx1;
wo WiteOx0 is
description
end WiteOxO0;
wo WiteOxl is
description
reset 0xO0;
end WiteOx1;

end FlI FO_EPTY;
rw FIFOTHR i s

"read the val ue 0x0";

"read the value 0x1";

"writing the value 0x0 has no effet";

"wite the value 0x1 to clear the register";

description "The threshold in the FI FO has been reached";

of fset 2 bit;
reset 0;
width 1 bit;
ro ReadOx0 is
description
reset 0xO0;
end ReadOxO0;
ro ReadOx1 is
description
reset 0Ox1;
end ReadOx1;
wo WiteOx0 is
description
end Wit eOx0;
wo WiteOxl is
description
reset 0xO;
end WiteOx1;

end FI FO THR,
rw FIFO FULL is

"read the val ue 0x0";

"read the val ue 0x1";

"writing the value 0x0 has no effet";

"write the value 0x1 to clear the register”;

description "The FIFOis Full";

offset 3 bit;
reset O;
width 1 bit;
ro ReadOx0 is
description
reset 0xO;
end ReadOxO0;
ro ReadOx1 is
description
reset 0x1;
end ReadOx1;
wo WiteOx0 is
description
end WiteOxO0;
wo WiteOxl is
description
reset 0xO0;
end WiteOx1;

end FI FO FULL;
rwFIFOOF is

"read the val ue 0x0";

"read the val ue 0x1";

"writing the value 0x0 has no effet"”;

"write the value 0x1 to clear the register”;

description "FIFO Over Fl ow | RQ';

of fset 4 bit;
reset O;
width 1 bit;

30

ro ReadOx0 is
description "read the val ue 0x0";
reset 0xO0;
end ReadOxO0;
ro ReadOx1 is
description "read the value 0x1";
reset 0Ox1;
end ReadOx1;
wo WiteOx0 is
description "witing the value 0x0 has no effet"”;
end Wite0x0;
wo WiteOxl is
description "wite the value Ox1 to clear the register"”;
reset 0xO0;
end WiteOx1;
end FI FO_OF;
end FI FO | RGs;

4.4 Component managing the IRQs of a module
This section aims at describe how to easily use the IRQ management component defined above as a part of this

component registers description using a FIFO, but does not focus on a fully description.
Be the following piece of registers specification of the Camera Core module. All registers are 32-bit wide.

Register Offset | Description
CC_REVISION 0x00 | Revision Register
CC_IRQSTATUS | 0x18 | Interrupt Status Register
CC_IRQENABLE | 0x1C | Interrupt Enable Register
CC_FIFODATA | 0x4C | FIFO Data Register
CC_TEST 0x50 | Test Register

The piece of specification below of the CC_IRQSTATUS register depicts the ranges affected for the three main
sub-modules of the Camera Core IP.

31/30[29]28/27]26 25\24\23_\22\21 [20l19f1817]16]15)14[13]12]11]10[9[8[7 |6 [5 |4 [3]2]1 |0

)
- -
= Serial rasanad Parallel rassnvad FIFO IRQs
i IRQs IRQs
include ‘‘common.rd ' /*** the file includes the tenplate form Reserved *k

import ‘‘FIFO_ IR’ [*** the fully instantiated formFIFO IRQ is inported ***/

/*** The form shoul d have been declared in the file comon.rd ***/
al | XXXXxxxxRegi sterWdth is

width 32 bit;
end XXXXxxxxRegi st er W dt h;

tenpl ate < RESET, N, OFFSET >

ro ReservedDoNot Wite extends Reserved<N, OFFSET > is
description ‘‘Reserved. Do Not Wite'’;
reset RESET;

end ReservedDoNot Wite;

al | | RQSTATUS ext ends XXXXxxxxRegi sterWdth is
description ‘‘Interrupt Status Register’’;
all FIFO extends FIFO IRQs is
offset init;

end FI FO

all reserved_1 extends Reserved<l16 - 12, 12> end reserved;
al | PARALLEL ... end PARALLEL;

all reserved_2 extends Reserved<26 - 20, 20> end reserved;
all SERIAL ... end SERIAL;

all reserved_3 extends ReservedDoNot Wite<0bll, 2, 30> end reserved;

31

end | RQSTATUS;

main all CaneraCore is
description ‘‘Canera Core Registers’’;
ro CCREVISION ... end CC_REVI SI QN
rw CC_| RQSTATUS ext ends | RQSTATUS i s
of f set 0x18;
end CC_| RQSTATUS;

rw CC_| RENABLE ... end CC_| RQENABLE;
rw CC_FI FODATA ... end CC_FI FODATA;
ro CC_TEST ... end CC_TEST;

end Caner aCore;

